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Introduction 

 

Stated choice experiments have a long history in both academia and practice. Originally 

designed to empirically test a range of economic theories, such as the existence of indifference 

curves (Thurstone, 1931; Mosteller and Nogee, 1951; Rousseas and Hart, 1951; May, 1954; 

MacCrimmon and Toda, 1969), stated choice experiments have since gained widespread 

acceptance across a range of applied economics fields, including transportation (e.g., Bliemer 

and Rose, 2011; Hess et al., 2020; Ortúzar et al. 2021), health (e.g., De Bekker-Grob et al., 

2013; Determann et al., 2014; Hansen et al., 2019), marketing (e.g., He and Oppewal, 2018; 

Wu et al., 2019; Burke et al., 2020) and environmental and resource economics (e.g., Scarpa et 

al., 2003; MacDonald et al., 2011; Greiner et al., 2014). Despite their prevalence, the design 

and implementation of a stated choice experiment requires far more nuance than most other 

survey methods insofar as the technique requires that the analyst provide respondents a detailed 

set of scenarios that they are expected to interact with and respond too. Stated choice 

experiments therefore don’t simply ask respondents what they did in some situation (such data 

is called revealed preference data), or how they feel about some statement (as with attitudinal 

type questions), but rather creates hypothetical scenarios that respondents are expected to react 

to. The purpose of this chapter is to describe the processes required to generate these 

hypothetical scenarios. 

 

In a choice experiment, also referred to as stated choice survey or choice-based conjoint, the 

analyst asks agents (i.e., decision-makers, for example consumers buying a certain type of 

product, travellers making a trip, patients choosing treatment, physicians prescribing 

medication, etc.) to complete a series of choice tasks (also called choice sets) consisting of 

several alternatives, each described by their characteristics. Example choice tasks are shown in 

Figures 1 and 2. Each choice tasks consists of several elements, namely (i) the choice scenario, 

describing the context in which the choice is made, (ii) the alternatives to choose from, (iii) the 

profiles for each alternative describing the attributes (also called factors) with their specific 
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levels, and (iv) the response mechanism, which typically consists of a radio button for the most 

preferred option, but can also include a two-step mechanism for unforced and forced choice 

(see Figure 2, where for example first the unforced choice is captured, but if the patient insists 

on being treated, a forced choice needs to be made), a best-worst choice, or a first best and 

second best choice (although not directly relevant to the discussion here, volumetric choice 

tasks have also been employed where respondents are asked to select different continuous 

amounts or quantities from multiple discrete alternatives). While such choice tasks are often 

shown in a table format with text, different formats exist, see e.g., Figure 3. Images may assist 

agents in imagining the choice alternatives, although one should be careful not to accidentally 

influence agents with additional attributes (e.g., colours, or mood in a photo).  

 

 
 

Figure 1: Laptop choice 
 
 

 
 

Figure 2: Treatment choice 

Scenario

Alternatives

Attribute 
levels
(Profiles)

Response

You are looking to buy a new laptop for at home.
Which of the following laptops would you prefer?

Laptop A Laptop B

Intel Core i7 processor

1 TB hard-disk drive

$1800

Intel Core i5 processor

256 GB hard-disk drive

$2100

Scenario

Alternatives

Attribute 
levels
(Profiles)

Response 1
(unforced)

Consider a 70 year old patient with advanced prostate cancer.
As his doctor, what treatment would you recommend?

Radiotherapy Surgery No treatment

High risk of permanent
side effects

70% probability
of curing patient

Low risk of permanent
side effects

50% probability
of curing patient

Response 2
(forced)
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Choice experiments are usually part of a larger questionnaire or survey consisting of several 

parts. Although survey flow differs from questionnaire to questionnaire, the first part of a 

survey typically involves agents being asked screen-out questions to judge their eligibility. In 

the second part, agents might be asked questions related to their current situation and behaviour 

related to the specific study. This information can be used to tailor choice tasks in the third part 

consisting of the choice experiment. The fourth part typically concludes by asking additional 

questions such as questions about general attitudes and perceptions, socio-demographic 

questions, and open-ended qualitative questions. In some instances, these later questions may 

be asked before the choice experiment, however if such information is considered to be 

sensitive (such as asking about income), then generally these questions are saved to the end of 

the survey so as to minimise potential drop-outs or incompletes. 

 

 
Figure 3: Laptop choice with images 

 

The design of choice experiments can be somewhat complex, consisting of several steps or 

stages. The typical steps involved in designing a choice experiment are: 

 

I. Determine whether an experiment is labelled or unlabelled depending on research 

questions; 

II. Determine the alternatives and attributes to include in the experiment; 

III. Determine the attribute levels and their coding; 

IV. Determine number of choice tasks in experimental design; 

V. Choose experimental design strategy; 

VI. Conduct pilot study; 

VII. Conduct main study; 

 

Each step is discussed in more detail in the next sections.  
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Step I: Labelled versus unlabelled experiment 

 

Consider a choice experiment consisting of choice tasks ,s S  where S  is the total number 

of choice tasks, and assume that all or a subset of these choice tasks nS S  are given to agent 

{1, , },n N   where N is the sample size of responding agents. In each choice task, agents are 

asked to choose among alternatives in set J, where J  is the number of alternatives in the set. 

These alternatives can be of the same type or of different types. The type of an alternative is 

commonly described by a label. A label can for example be a product category, a brand name, 

but can also refer to a specific alternative type such as a status quo or opt-out (no choice) 

alternative. 

 

If all alternatives have the same label, then the label is assumed not to play a role in the choice 

process. Examples can be found in route choice (Route A, Route B, Route C), medication 

choice (Medication 1, Medication 2), policy choice (Policy I, Policy II), laptop choice (Laptop 

1, Laptop 2), etc. An example is shown in Figure 1. Such an experiment is often referred to as 

an unlabelled experiment and the utility function of each unlabelled (generic) alternative is 

identical, i.e., 
 

( ), {1, , }, , ,nsj nsj nV f n N s S j J      x        (1) 

 

where nsjV  is the systematic utility that agent n attaches to alternative j J  in choice task 

ns S  depending on the profile of alternative j defined by the vector of attribute levels nsjx  

and a generic function f. This function depends on a vector of unknown generic preference 

parameters β  that describe trade-offs across the attributes and attribute levels and are subject 

to estimation.  

 

While not relevant at the experimental design stage, in model estimation one would add 

constants in 1J   alternatives to account for presentation order effects of alternatives, also 

known as left-to-right bias (in countries where one reads from left to right), where alternatives 

shown on the left (or top) in the survey may have a higher propensity of being chosen than 

alternatives shown on the right (or bottom) (see e.g., Ryan et al. 2018). 

 

If some or all of the alternatives have different labels, then choice is influenced by these labels. 

Examples can be found in mode choice (Car 1, Car 2, Train, Bus), treatment choice (Surgery, 

Radiation Therapy), smartphone choice (iPhone, Samsung Galaxy, Google Pixel), policy 

choice (Current policy [status quo], Policy A, Policy B), activity choice (Activity 1, Activity 

2, Neither [opt-out]), etc. An example is shown in Figure 2. Such an experiment is referred to 
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as a labelled experiment and the utility functions of each labelled alternative can be different 

for each label ,m M   
 

( ), {1, , }, , ,nsj m nsj n mV f n N s S j J      x        (2) 

 

where mJ J  is the subset of alternatives with label m, where ,mm
J J  and each 

alternative within this set has the same linear or nonlinear label-specific utility function .mf  

These functions have preference parameters mβ , which can be label-specific or generic across 

labels. The functions also include label-specific constants, where for identifiability purposes 

one of them needs to be normalised to zero for a chosen reference label. That is, one would 

estimate 1M   label-specific constants. As an example, in the mode choice situation with 

alternatives Car 1, Car 2, Train, and Bus, one would specify four alternatives across three labels 

(Car, Train, Bus), where Car 1 and Car 2 have identical utility functions. With three labels, the 

model identifies two label-specific constants. Note that an opt-out alternative can only have a 

label-specific constant (which may be normalised to zero) while a status quo alternative is 

described by a regular utility function using fixed attribute levels. In some experiments, the 

levels of the status quo may be agent specific, taking on values provided earlier on in the 

survey.  

 

In contrast to estimating models using data from an unlabelled experiment, one cannot simply 

add alternative-specific constants to account for presentation order effects of alternatives in a 

labelled experiment since such constants would be confounded with (some or all) label-specific 

constants. How to account for presentation order effects of alternatives in labelled experiments 

will be discussed in Step VI. 

  

Whether a labelled or unlabelled experiment is suitable for a certain study depends on the 

research questions being addressed. If one is interested in determining the willingness-to-pay 

(WTP) for certain attribute levels, or in determining the relative importance of attributes in 

decision-making, then it often suffices to consider an unlabelled experiment in which two or 

more alternatives are shown as variants of the same label. On the other hand, a labelled 

experiment is suitable if one would like to determine market shares of a product type or demand 

elasticities. One would include an opt-out alternative if one is interested in predicting the 

unconditional absolute demand in the market using unforced choice tasks, while it can be left 

out if one is only interested in relative market shares or conditional demand across products by 

asking to make a forced choice (it is worthwhile noting that evidence suggests that for the same 

empirical context, the results one obtains from forced and unforced choice tasks can vary 

dramatically; see Dhar and Simonson, 2003). A status quo alternative is often added to 

determine willingness to deviate from an existing policy or simply to make the choice task look 
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more familiar to agents. Labelled experiments can also be used to determine WTP values, 

particularly if the WTP values are expected to vary across different labelled alternatives (e.g., 

the willingness to pay for travel time savings differs for bus and car use). If however, WTP 

values are expected to be the same across alternatives, then given that labelled experiments 

generally require more complex choice tasks and the estimation of a larger number of 

coefficients, there is no reason to use a labelled experiment if the sole purpose of the study is 

to determine WTP values.  

 

Significant differences in the results of choice experiments with and without the presence of 

status quo alternatives have been found within the literature (see e.g., Dhar, 1997), with the 

recommendation being in general that status quo alternatives should be used in such 

experiments where applicable (e.g., Adamowicz and Boxall, 2001; Bennett and Blamey, 2001; 

Bateman et al., 2003). Dhar (1997) found that the decision to defer choice (and hence select a 

no choice option), is influenced by the absolute difference in attractiveness among the 

alternatives. That is, the overall utility of the alternative is the main driver of selecting a no 

choice option as opposed to the complexity of attribute trade-offs necessary when choosing 

between different alternatives. Boxall et al. (2009) report similar findings to Dhar (1997), 

suggesting that increasing task complexity, related to how similar the alternatives are as 

described by the attribute levels shown, leads to increased choice of the status quo alternative, 

whilst at the same time, a responding agent's age and level of education may also influence this 

choice. 

 

Dhar and Simonson (2003) found that if a forced-choice is followed by an unforced-choice in 

a dual response task, then some alternatives tended to lose proportionally more share than 

others, violating the independent and identically distributed (IID) model assumption. As such, 

it may be necessary to estimate more sophisticated discrete choice models that relax the IID 

assumption when data is collected using both forced and unforced choice responses. Brazell et 

al. (2006) failed to locate IID violations in a similar experiment, hypothesising that failure to 

detect such effects was likely the result of using a more complex choice experiment involving 

more attributes than was used by Dhar and Simonson (2003), concluding that the increased 

complexity of their design decreased the prevalence of possible compromise alternatives 

appearing within the experiment. Rose and Hess (2009) also explored the use of dual 

forced/unforced response mechanisms, however unlike the Dhar and Simonson (2003) and 

Brazell et al. (2006) studies, made use of respondent reported status quo alternatives as opposed 

to a simple no-choice alternative. Like Brazell et al. (2006), Rose and Hess (2009) found no 

evidence for IID violations between the forced and unforced tasks. Rose and Hess (2009) also 

reported no differences between the WTP estimates obtained across the dual forced/unforced 

response data.       
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Kontoleon and Yabe (2003) compared a ‘do not buy’ response format to a ‘buy/choose my 

current brand’ format. Keeping everything else equal, they found that the relative choice share 

of the opt-out alternative was higher in the ‘own brand’ treatment as opposed to the treatment 

that received the ‘no purchase’ treatment. They further found differences in parameter 

estimates for the more important attributes, while little difference were observed for less salient 

attributes. 

 

Step II: Determine alternatives and attributes 

 

Once the study objectives are known and a choice of a labelled or unlabelled experiment has 

been made, the analyst needs to determine which alternatives and attributes to include in the 

choice experiment. This is different for each study and while for some studies determining the 

alternatives and attributes is straightforward, for other studies, it requires careful consideration 

of how the outcomes will be used. 

 

For any experiment, the minimum number of alternatives shown in a choice task is two, i.e., 

2,J   one of which may be a status quo or no choice alternative. The larger the number of 

alternatives, the more information is captured in each choice task, but also the larger the 

cognitive burden placed on the responding agent. In case of an unlabelled experiment, there is 

generally no need to go beyond two or three generic alternatives. If the number of attributes is 

small, then three or four alternatives may be fine, but with a large number of attributes, one 

typically restricts the number of alternatives to two. In case of a labelled experiment, the 

number of alternatives in each choice task depends on the number of relevant labels to include 

since each label requires at least one alternative, i.e., 1,mJ   which means that the number of 

alternatives needs to be larger than or equal to the number of labels, .J M   For example, 

in a mode choice experiment, one may need to include labels for Car, Metro, Train, Bus, 

Bicycle and Walk, such that the number of alternatives in a choice tasks is at least six. If there 

is a risk that a certain label is dominant, e.g., if some agents will always choose Car no matter 

what the attribute levels are, then one can consider including two Car alternatives, Car 1 and 

Car 2, to ensure that all agents make trade-offs across alternatives. If the number of labelled 

alternatives is considered too large, one could show only a subset of labelled alternatives in 

each choice task, a so-called partial choice set (Bliemer et al., 2018). This reduces the 

complexity of each individual choice task, but does require increasing the number of choice 

tasks per agent or increase the sample size to capture the same amount of information. 

 

Extensive research has been conducted on the impact of the number of alternatives shown in 

DCEs. For example, Adamowicz et al. (2006) found that respondents assigned to a three-

alternative version of a choice experiment where more likely to choose a status quo option than 
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a two-alternative version. Rolfe and Bennett (2009) report similar findings when they 

compared two- and three-alternative versions of a choice experiment. Caussade et al. (2005) 

found that the number of alternatives shown to respondent had the second largest influence on 

error variances out of all design dimensions they tested and concluded that showing four 

alternatives is better than showing either three or five alternatives in terms of the impact of 

scale effects. DeShazo and Fermo (2002) found a quadratic relationship between the number 

of alternatives and the variance, suggesting that error variance first decreases, then increases 

with the number of alternatives. In contrast, Arentze et al. (2003) found no error variance 

differences between choice experiments versions making use of two versus three alternatives. 

Hensher (2004) found that as the number of alternatives increases, there exists a differential 

impact upon the WTP measures for different attributes of the design, whilst Rose et al. (2009) 

found different impacts on mean WTP estimates obtained from the same survey conducted 

across different countries. Using eye-tracking technology, Meißner et al. (2020) report that 

respondents tend to increase the amount of information they process as the number of 

alternatives increases, whilst simultaneously filtering out more pieces of information when 

choice tasks include more alternatives. Interestingly, Meißner et al. found that respondents 

almost immediately change their search strategies adopted when the number of alternatives 

changes dramatically (say from two to five alternatives) from one choice task to another. 

 

With respect to attributes, one generally includes all attributes that are deemed relevant in 

making the choice. Relevant attributes can be determined by reviewing the literature or 

conducting focus groups or in-depth interviews with a small number of agents. While 

considering only a small number of attributes assists in reducing cognitive burden on agents, it 

has been argued that relevance is more important than quantity. If a large number of attributes 

is deemed relevant, then one can consider showing only a subset of attributes in each choice 

task. Such an incomplete profile is typically referred to as a partial profile (see e.g., Chrzan, 

2010; Kessels et al., 2011). Showing partial profiles in a choice task leads to a reduction in 

information captured in the choice task, therefore one will need to increase the number of 

choice tasks per agent or the sample size to ensure that the same amount of information is 

obtained. 

 

Research has tended to show that the number of attributes present within the experiment does 

impact upon the behavioural responses provided. Caussade et al. (2005) and DeShazo and 

Fermo (2002) report that the number of attributes has a significant impact upon the error 

variance of models estimated using choice experiment data. DeShazo and Fermo (2002) found 

that, on average, an increase in the number of attributes leads to an increase in the variance of 

the error component in utility of choice experiments, whilst Caussade et al. (2005) concluded 

that the number of attributes used had the largest influence on error variances out of all design 
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dimensions. In a similar vein, Arentze et al. (2003) found that increasing the number of 

attributes from three to five led to increased error variances and parameter differences. In 

support of this argument, Green and Srinivasan (1990) argued that respondents are incapable 

of processing many attributes simultaneously and become tired and hence consequently ignore 

or address attributes in random and uncontrolled ways, or tend to use heuristics that lead to 

biased preference measures. Hensher (2006) found that the number of attributes has a 

significant influence on parameter outputs and WTP measures, which was also confirmed by 

Rose et al. (2009) who found statistically significant differences in WTP measures as the 

number of attributes increase. Nevertheless, Rose et al. (2009) report directional differences in 

the mean WTP over data sets collected from different countries. 

 

The number of alternatives and attributes shown in each choice task also depends on the survey 

instrument. When using a computer-aided personal interviewer (CAPI), one can generally 

present more complex choice tasks to each agent given that a personal interviewer can explain 

the choice task and answer any questions that the responding agent may have about what they 

are presented with. In case of a typical online survey, completed on a computer or smartphone, 

one would generally keep the number of alternatives and attributes shown in each choice task 

limited as agents may be less engaged with the experiment and therefore spent less time on 

each choice task. 

 

Step III: Determine attribute levels and their coding 

 

Attributes can be classified as qualitative (also referred to as categorical), or quantitative (also 

referred to as numerical), and can further be distinguished according to their measurement 

scale, see Table 1.  

 

Attributes with nominal or ordinal scale describe qualitative/categorical data. If an attribute has 

nominal scale then its levels do not have a specific ordering, whereas an attribute with ordinal 

scale has levels that describe a certain order. Attributes with interval or ratio scale describe 

quantitative/numerical data, which can be discrete or continuous. Such attributes have an order 

in which absolute differences between levels are meaningful and attributes with a ratio scale 

also have an absolute zero point.  
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Table 1: Data types and measurement scales 

Data type Measurement scale Example attributes with example levels 

Qualitative / 

categorical 

Nominal 
Colour (red, blue, yellow, green, purple) 
Warranty (yes, no) 
Livestock (cattle, sheep, pigs, horses) 

Ordinal 
Comfort (low, medium, high) 
Side-effects (none, moderate, severe) 
Education (primary, secondary, tertiary) 

Quantitative / 

numerical 

Interval 
Temperature (5 ºC, 10 ºC, 15 ºC) 
Time of day (9a, noon, 5pm, midnight) 
Elevation (200 m, 700 m, 1500 m) 

Ratio 
Cost ($20, $30, $40, $50) 
Travel time (15 min, 20 min, 25 min) 
Distance (1 km, 2 km, 5 km, 10 km) 

 

 

Qualitative attributes require a specific coding scheme for use in utility functions, where the 

most widely used schemes are dummy, effects or (orthogonal) contrast coding. Levels of 

quantitative attributes are often used directly into the utility function as a continuous linear 

effect, e.g. ,x  or a nonlinear effect, e.g. ln( ).x  While it is possible to use dummy, effects 

or (orthogonal) contrast coding for quantitative attributes using discrete levels, this makes it 

more difficult to interpolate/extrapolate beyond these levels in forecasting. Nevertheless, in 

some applied economics fields such as marketing it is common practice to do so. 

 

Once the measurement scale of each attribute has been identified, the number of levels can be 

determined. For nominal attributes, one typically needs to include all relevant levels. In case 

of an ordinal attribute, one can often choose the number of levels, for example ‘quality’ can be 

described as low - high, or as low – medium - high, or as low – medium – high - very high. In 

case of ordinal attributes, one may want to be careful not to cause ambiguity as different agents 

will understand something different with respect to ‘medium quality’. If possible, it is best to 

describe these levels in terms of specific characteristics, e.g., in terms of durability or referring 

to standards.  

 

For attributes with interval or ratio scale, the analyst has full flexibility in choosing the number 

of attribute levels. For estimating linear effects, two levels are sufficient, however for nonlinear 

effects one would need more than two levels. Using (orthogonal) polynomial functions, three 

levels would allow estimating linear and quadratic effects, while four levels would also allow 

estimating cubic effects. The attribute level range has a large influence on the reliability of the 
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parameter estimates. In general, a wide attribute level range (e.g., $10 to $50) leads to smaller 

standard errors than a narrow range (e.g., $25 to $30), but one should always make sure that 

the attribute levels are realistic and appropriate relative to other attributes. Further, in choosing 

the exact values of the quantitative levels, one should favour rounded values (e.g., $5, $10) 

over values that increase cognitive burden (e.g., $4.75, $9.90). Finally, one generally prefers 

equidistance attribute levels that cover the range equally (e.g., $5, $10, $15) over levels that 

are not equidistant (e.g., $5, $8, $15), unless the latter provides a more realistic representation 

of an attribute.  

 

As an example, consider an unlabelled laptop choice experiment with three attributes, namely 

processor, hard-disk storage, and price. Each attribute is assumed to have three levels, given in 

Table 2. Processor is measured on an ordinal scale, while hard-disk storage and price have a 

ratio measurement scale. The levels have a clear ranking order, where 1 is the most preferred 

level and 3 is the least preferred level. This ordering allows us to assess whether there exists a 

strictly dominant alternative in a choice task.  

 

Table 2: Attributes in laptop choice example 

Attribute Level Ranking order 

Processor 

Intel Core i3 3 

Intel Core i5 2 

Intel Core i7 1 

Hard-disk 

storage 

256 GB 3 

512 GB 2 

1 TB 1 

 $1500 1 

Price $1800 2 

 $2100 3 

 

Empirically, the number of attribute levels has been found to have a significant impact on the 

behavioural outcomes of choice experiments by several authors. Wittink et al. (1989) found 

that adding an intermediate level to a two-level attribute resulted in increasing the relative 

importance of an attribute, and in a subsequent study, Wittink et al. (1992) found that the 

number of levels influences the relative importance of an attribute, an effect that was magnified 

in the presence of dominated alternatives. Van der Waerden (2004) concluded that the number 

of attribute levels can influence choice outcomes, finding that the number of attribute levels 
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present in an experiment influences the scale of utility. Hensher (2006) found mixed evidence 

that the number of attribute levels affects the probability of respondents ignoring an attribute 

when completing choice experiment tasks, affecting some but not all attributes contained 

within the experiment. Caussade et al. (2005) report that the number of attribute levels 

employed has a statistically significant impact upon the degree of error variance present within 

the data, however they conclude that the impact is marginal, having the second lowest effect 

out of all the design dimensions they varied. Rose et al. (2009) found that the number of 

attribute levels used has a significant impact upon WTP estimates, however that these 

differences depend upon which country the data were collected from.  

 

A further experimental design dimension that has received attention in the past is the effect that 

attribute level range plays on behavioural responses. Meyer and Eagle (1982) and Eagle (1984) 

found that attributes with larger ranges produced larger effects than ones with smaller relative 

ranges, all else being equal. Ohler et al. (2000) on the other hand found attribute range 

differences affect experimental outcomes in terms of complexity of functional forms, model 

fit, power to detect non-additivity, and between-subject response variability. No effect was 

found on model parameters, within-subject response variability, or error variance. In contrast 

to Ohler et al., Caussade et al. (2005) concluded that attribute range significantly impacts upon 

error variances, and that changes to the range that attribute levels take had the third largest 

influence on error variances out of all the design dimensions they tested. Hensher (2004) found 

that increasing the range of attribute levels resulted in lower mean WTP values, whilst Rose et 

al. (2009) found significant impacts on WTP estimates given changes to attribute level ranges, 

however the directions of the impacts varied across different data sets.  

 

Step IV: Determine number of choice tasks in experimental design 

 

An experimental design contains the profiles (i.e., attribute levels of all alternatives) of all 

(unique) choice tasks in set S and can be represented by design matrix X, where each row 

consists of a choice task, and each column represents an attribute in an alternative. If each agent 

{1, , }n N   is shown the same choice tasks, i.e., each agent is subject to all choice tasks in 

the design matrix, then X is referred to as a homogeneous design. If different agents face 

different choice tasks, i.e., each agent is shown only a subset of choice tasks ,nS S  then X is 

referred to as a heterogeneous design. Heterogeneous designs are generally assumed to be a 

better choice because they provide more information (Sándor and Wedel, 2005), although a 

homogeneous design can be justified if the number of parameters to be estimated is small 

relative to the number of choice tasks (Kessels, 2016). In most cases, a heterogeneous design 

is constructed by first explicitly creating design matrix X and then splitting it into two or more 

parts called blocks. Each block represents a different version of the choice experiment, whereby 



13 
 

agents are distributed among these blocks (as evenly as possible). Instead of first creating a 

(large) explicit design matrix, one can also generate random choice tasks on-the-fly for each 

agent n, in which case the design matrix X is implicit. 

 

The size of design matrix X is defined by the number of choice tasks, .S  The required size 

depends on the total number of parameters to estimate in the choice model. Let K denote the 

total number of parameters, including label-specific constants and coefficients of attributes that 

are dummy, effects or contrast coded. There needs to be sufficient variation in design matrix 

X to estimate these K parameters. When an agent makes a choice among J  alternatives in a 

certain choice task ,s S  this provides information that the chosen alternative is preferred over 

each of the other 1J   alternatives shown to the agent. In other words, a design X consisting 

of S  choice tasks provides  1S J   pieces of information. To be able to estimate K 

parameters, it must hold that  1 ,S J K    in other words, the minimum size of the design 

can be determined by finding the smallest integer S  that satisfies: 

 

.
1

K
S

J



            (3) 

 

The difference between the actual number of choice tasks in the design and the minimum 

required design size is referred to as the degrees of freedom.  

 

As an example, consider the laptop choice example with the three attributes shown in Table 2. 

Suppose that two alternatives are shown at each choice ask, i.e., 2.J   Further, assume that 

the processor attribute is dummy coded such that it has two associated parameters, whilst 

storage and price are assumed to be continuous variables, each with a single parameter, such 

that 4.K   Then according to Eqn. (3) it should hold that 4.S   While a design matrix of 

size 4 would be sufficient, increasing the degrees of freedom (and hence increasing variety in 

the design data) is recommended to improve identification of the parameter estimates. The 

number of choice tasks S  is often set to at least two or three times the minimum size to have 

sufficient degrees of freedom. 

 

In choosing ,S  one may also want to consider attribute level balance constraints. A design 

matrix is attribute level balanced if each attribute level appears an equal number of times across 

all choice tasks. Considering three levels in our laptop choice example in Table 2, attribute 

level balance could be guaranteed if the design size is a multiple of three, i.e., 6, 9, 12, etc. If 

the price attribute would have four levels, then attribute level balance would require that S  is 

divisible by three and four, i.e., 12, 24, 36, etc. Attribute level balance is not a requirement, but 
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some degree of balance is often considered desirable to obtain a good coverage over the data 

space. 

 

If the number of choice tasks S  is too large to show a single agent, then one can move from 

a homogeneous design to a heterogeneous design by blocking the design into smaller parts. For 

example, if 24S   then one can block the design for example into four parts of six choice 

tasks each, or three parts of eight choice tasks each, or two parts of 12 choice tasks each. The 

number of choice tasks to show to each agent, ,nS  depends on the complexity of each choice 

task and how many the analysts believe an agent can handle without significant fatigue (which 

is a bigger issue with online surveys than face-to-face interviews). Survey instruments for 

choice experiments can often select a block or a random subset of choice tasks from a given 

explicit design matrix X, therefore implementing a heterogeneous design is not necessarily 

complicated.  

 

Mixed evidence exists as to the impact the number of choice tasks has empirically upon choice 

experiments. Caussade et al. (2005) and Hensher (2004, 2006) found that the number of choice 

tasks acts upon the error variance of discrete choice models, however the effects reported by 

both Caussade et al. (2005) and Hensher (2004) were only marginal. Interestingly, Caussade et 

al. (2005) keeping the choice context constant whilst systematically varying all possible design 

dimensions across a sample of respondents, found that the number of choice tasks a respondent 

saw had the least influence of any of the design dimensions on the error variance of choice 

data. Brazell and Louviere (1998), keeping all other design dimensions constant, varied only 

the number of choice tasks shown to each respondent to be between 16 and 120. In their study, 

they found evidence of learning and fatigue effects, however they concluded that there exist no 

significant differences in either internal reliability or model variability for models estimated 

from survey questionnaires with varying numbers of choice tasks. Likewise, Hensher et al. 

(2001) reported finding that increasing the number of choice tasks had only a marginal impact 

upon model elasticities, however differences in elasticities were observed when agents were 

presented with 24 and 32 choice tasks compared to less. Hensher et al. recommend using more 

than four choice tasks with 16 being sufficient for most modelling efforts. Beck et al. (2011) 

found only minor impacts on the mean WTP estimates obtained from choice experiments with 

different numbers of choice tasks whilst Rose et al. (2009) found mixed evidence for impacts 

of the number of choice tasks upon WTP estimates, with differences observed across different 

countries. In this later study, the authors found that the number of choice tasks had almost no 

impact on a data set collected within an Australian context, a limited impact on the same survey 

collected in Taiwan, and a very large impact using the same survey in Chile. 
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Step V: Choose experimental design strategy 

 

In this section, we assume that the aim is to determine a design matrix X for the estimation of 

a conditional logit model, also referred to in the literature as a multinomial logit model1, which 

is the work horse of discrete choice models. Choice probabilities in the conditional logit model 

are given by  
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and the Fisher information matrix for the conditional logit model is a K K  matrix F that can 

be computed as (McFadden, 1973) 
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Different types of choice models result in different matrices F, for example Sándor and Wedel 

(2002) derived the Fisher information matrix for the cross-sectional mixed logit model, Bliemer 

et al. (2009) for the nested logit model, and Bliemer and Rose (2010) for the panel mixed logit 

model. It is possible to design data specifically around more advanced choice models, but this 

may come at a significant computational cost and may even be practically infeasible. Therefore, 

at the design stage it is common to design the data while having a conditional logit model in 

mind. Note that this generally does not prohibit the estimating of more advanced models at a 

later stage. As noted by Bliemer and Rose (2010), data that is designed for estimating a 

conditional logit model will generally also work well for estimating a panel mixed logit model.  

 

The (asymptotic) variance-covariance matrix of parameter estimates, ˆvar( ),Ω β  is the inverse 

of the Fisher information matrix, i.e., 1.Ω F  The diagonal elements of matrix Ω  are directly 

related to the standard errors of the parameter estimates, namely the standard error of parameter 

k  equals ,kk  where kk  is the kth diagonal element of matrix .Ω  A good design matrix X 

ensures that each parameter receive (non-zero) Fisher information such that they can all be 

estimated, and that parameter estimates are reliable (i.e., small standard errors). From Eqn. (5) 

we can make the following observations. First, Fisher information for the conditional logit 

 
1 McFadden (1973) made a distinction between a multinomial model and a conditional logit model. In his 
definition, a multinomial logit model only contains variables related to the respondent (i.e., socio-demographics), 
whereas a conditional logit model only contains variables related to the alternatives (i.e., attributes). Therefore, 
according to these definitions, conditional logit is the appropriate term when we refer to data in a stated choice 
experiment. However, in practice, both socio-demographics and attributes appear in the utility functions and in 
the literature the term multinomial logit became the dominant term to indicate this type of model. 
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model only depends on attribute levels and choice probabilities, not on choice observations, 

therefore Fisher information can be determined based on experimental design X and best 

guesses of the choice probabilities for each alternative and each choice task. The same holds 

for the cross-sectional mixed logit model and nested logit model, but the panel mixed logit 

model unfortunately requires simulated choice observations. Second, no Fisher information is 

obtained for choice tasks with a dominant alternative (with 1nsjp   for a certain alternative j). 

Third, no Fisher information is obtained if attribute levels overlap across alternatives such that 

no trade-offs are made. Fourth, more Fisher information is obtained if levels of quantitative 

attributes are further apart (wide range). And finally, in case of a homogeneous design where 

all agents face the same choice tasks, Fisher information increases linearly with sample size N, 

which means that Ω  is proportional to 1/ N  such that standard errors decrease at a rate of .N  

 

In this section we discuss three main types of design strategies, namely efficient designs, 

orthogonal designs, or random designs, and we discuss advantages and disadvantages of each 

strategy. 

 

Efficient designs 

 

Efficient designs have become the state-of-the-art in experimental design in the past decade. A 

design matrix X is efficient if it captures a large amount of Fisher information. Since it is 

generally not possible to determine the most efficient design, the typical aim is to generate a 

design that is efficient without claiming that it is optimal. To maximise Fisher information, the 

volume of matrix F can be maximised, which is equal to minimising the volume of variance-

covariance matrix .Ω   

 

A K K matrix can be represented as a hypercube in K dimensions. The lengths of the edges 

of a matrix are given by its eigenvalues ,λ  where k  is the eigenvalue for dimension k, which 

in matrix F corresponds to parameter ,k  {1, , }.k K   Eigenvalues are determined via an 

eigen decomposition where matrix F is decomposed as 1,F QΛQ  where Q is a matrix of 

eigenvectors that span the hypercube and 1diag{ , , }K     is a diagonal matrix with 

eigenvalues of F, and the volume can be computed by multiplying the lengths of the edges of 

the hypercube. If 2,K   one multiplies the length and width to obtain the volume of the square, 

if 3K   one multiplies the length, the width, and the height to obtain the volume of the cube, 

etc. The volume of Fisher information is therefore given by the determinant of F,  

 

1
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K
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k
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F           (6) 

 



17 
 

A related measure to the volume of Fisher information is the D-error, which is defined as the 

determinant of the variance-covariance matrix to the power 1/ K  to normalise the measure and 

account for the number of parameters, 

 

 
1/

1/ 1
D-error det( ) .

det( )

K
K  

   
 

Ω
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        (7) 

 

As a result, minimising the D-error equals maximising the volume of Fisher information. The 

literature commonly refers to D-efficient designs to indicate a low D-error. There exists no 

threshold for a ‘good’ D-error value is since this is case-specific and cannot be compared across 

studies, so all that can be said is that lower is better. It is generally also not possible to compute 

the lowest D-error value since this requires exhaustive evaluation of all possible experimental 

designs, which is not practically feasible. To illustrate, consider our simple laptop choice 

example with two alternatives with the attribute and levels shown in Table 2. This means that 

each alternative has 33 27  unique profiles, such that there exist 227 729  unique choice 

tasks. Suppose that one is interested in determining the most efficient design consisting of six 

choice tasks. Choosing the best six choice tasks out of 729 possible choice tasks (without 

replacement) would require the evaluation of 729!/ (729 6)!  147,030,187,802,098,000  

unique designs, which would take even the fastest computer a very long time to complete. 

 

To compute the efficiency of a design, utility functions need to be fully specified, including 

any interaction effects, nonlinearities, and possible qualitative coding (e.g., dummy coding). If 

an analyst tries to optimise the data for a choice model where one or more parameters are not 

identifiable (e.g., due to overspecification, due to lack of variation in attribute levels, or due to 

self-imposed multicollinearity via constraints), then the volume of Fisher information will be 

zero and the D-error will be infinite/undefined. Therefore, the D-error informs the analyst 

whether the model as specified can be estimated based on the specified attribute levels and 

constraints; a finite D-error (usually smaller than 1) gives confidence that the data can be used 

for model estimation. 

 

In addition to D-efficient designs, other design types such as A-efficient designs (see e.g., 

Huber and Zwerina, 1996) or C-efficient designs exist (see e.g., Scarpa and Rose, 2008). An 

A-efficient design minimises A-error related to the circumference, instead of volume, of the 

Fisher information matrix, and a C-efficient design is used when optimisation of some function 

of parameters is of interest, such as WTP estimates. Many other efficient design types exist 

(see Kessels et al., 2006), all measuring information in a slightly different way, but D-error is 

by far the most widely used information criterion and is recommended in most cases. 
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The main advantage of using an efficient design is that it captures (near) maximum information 

for a specific model, which means that it enables significant and/or reliable parameter estimates 

at smaller sample sizes that other design strategies. This makes efficient designs particularly 

useful if one is restricted either by budget or by a limited population of specific agents (e.g., 

pilots, physicians, patients with a certain disease, managers in a firm, etc.). Further, efficient 

designs are very flexible and can be used in conjunction with various constraints on attribute 

levels (Collins et al., 2014), for example to avoid attribute levels that are unrealistic or 

impossible, and can avoid dominant alternatives (Bliemer et al., 2017). The main disadvantages 

of an efficient design strategy are that efficient designs cannot be determined manually and 

require the use of optimisation algorithms, and that efficiency is sensitive to prior information 

about the expected choice probabilities in each choice task. To determine these expected choice 

probabilities, best guesses of the (unknown) parameter values, referred to as priors, are needed.  

 

Different types of priors can be used to generate efficient designs. Although priors in 

experimental design have a somewhat different meaning than priors in Bayesian statistics, we 

use similar terminology to indicate the various types of priors. Two main types of priors can 

be distinguished, namely informative priors and noninformative priors. Informative priors are 

based on prior knowledge obtained from a pilot study, the literature (although being aware of 

possible scale, culture, and country effects), or expert judgement (see e.g., Bliemer and Collins, 

2016), whereas noninformative priors are not based on any prior information except for the 

possible knowledge of the sign of the parameter. In practice, one would typically not mix the 

two types of priors in generating an efficient design. Each of these two types of priors can be 

set using either a fixed value, referred to as a local prior, or as a probability distribution, referred 

to as a Bayesian prior. One can mix local and Bayesian priors in generating an efficient design. 

Table 3 shows examples of the various types of priors for specific parameter, where 

noninformative priors have a value of zero or a uniform distribution around zero, or in case of 

knowledge of the sign, a near-zero positive or negative value or a uniform distribution with an 

upper or lower bound of zero. The further these priors (set when generating an efficient design) 

deviate from the true parameter values (obtained via model estimation after the data collection), 

the more efficiency will be lost. Choosing bad priors can also lead to inefficient designs (see 

for example the simulation study described in Walker et al., 2017), therefore choosing 

appropriate priors needs to be done deliberately, and if uncertain, it is best to choose 

noninformative (zero) priors or conservative (close to zero) priors. 
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Table 3: Types of priors and examples 

  Local  Bayesian 

Informative priors 

 
0.5,k     

0.8,k   

1.2k   

 
Normal( 0.5, 0.2),k   

Normal(0.8, 0.5),k   

Lognormal(1.2, 0.9)k   

Noninformative priors 

 
0,k   

0.000001,k    

0.000001k   

 
Uniform( 1,1),k   

Uniform( 1, 0),k   

Uniform(0, 2)k   

 

Several software tools exist containing algorithms to locate efficient designs, including Ngene 

(ChoiceMetrics, 1998), the ‘%ChoiceEff’ macro in SAS (Zwerina et al., 2010), and the ‘idefix’ 

package (Traets et al., 2020) in R. Each tool allows the minimisation of the D-error via either 

a column-swapping algorithm, row-swapping algorithm, and/or a coordinate-swapping 

algorithm. A coordinate-swapping algorithm such as proposed by Meyer and Nachtsheim 

(1995) is mainly useful for generating optimal designs without constraints, a column-swapping 

algorithm (e.g., Huber and Zwerina, 1996) is particularly useful for designs with attribute level 

balance constraints, and a row-swapping algorithm like the modified Federov algorithm (Cook 

and Nachtsheim, 1980) is particularly useful for designs with attribute level or dominance 

constraints.  

 

Orthogonal designs 

 

Orthogonal designs have been used for choice experiments since the 1980s and have been the 

default design approach for several decades. A design matrix X is called an orthogonal array if 

it is attribute level balanced and if for each two attributes, each pair of attribute levels appears 

equally across the choice tasks. If attributes have different numbers of levels, then such arrays 

are often referred to as mixed orthogonal arrays, in contrast to conventional fixed-level 

orthogonal arrays (Hedayat et al., 1999). Attribute levels in (fixed-level or mixed) orthogonal 

arrays are uncorrelated (by definition), therefore multicollinearity is avoided.  

 

The main advantages of orthogonal designs are that they cover the attribute space nicely, and 

no skill or running algorithms is required since they can be found in lookup tables in books 

(e.g., Hahn and Shapiro, 1967) or in online libraries (simply conduct a web-search for 

‘orthogonal array’ to find the most recent sets of (mixed) orthogonal arrays as new arrays are 

being found and added over time). Further, orthogonal arrays allow blocking of the design 

matrix in such a way that it maintains attribute level balance within each block. Several 

disadvantages of orthogonal designs exist. First, orthogonal arrays only exist for specific 
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combinations of the number of attributes and attribute levels. If attributes have a varying 

number of levels where some have more than four levels, then an orthogonal array will likely 

not exist. Secondly, orthogonal arrays have a very rigid structure, meaning that it is generally 

not possible to impose constraints on attribute levels or avoid dominant alternatives. One could 

manually remove choice tasks from the orthogonal design that violate certain constraints or 

contain dominant alternatives, but that would mean that the design is no longer orthogonal. 

Orthogonality is also lost in the data when considering interaction effects in the utility function 

that were not considered when locating an orthogonal array, when using dummy or effects 

coding, or when there are missing observations, such as unequal representation of blocks in the 

data or unanswered choice tasks due to fatigue. 

 

Independent estimation of parameters has often been claimed as a benefit of using orthogonal 

design, but it should be noted that this benefit holds for estimating linear regression models 

and does not hold for the estimating choice models. If design matrix X is orthogonal and all 

choice tasks are utility balanced, i.e., nsj nsiV V  for all alternatives j i  such that 1/ ,nsjp J
then F becomes a diagonal matrix, such that Ω  is also diagonal, which would imply that 

parameter estimates are uncorrelated and can be independently estimated. However, it is 

impossible to satisfy both orthogonality and utility balance at the same time, unless all 

parameters are equal to zero. In practical applications, parameters are clearly expected to be 

non-zero, hence it is in practice not possible to obtain uncorrelated choice data. 

 

Street et al. (2001), Burgess and Street (2003), Street and Burgess (2004) and Burgess and 

Street (2005) introduced so-called optimal designs specifically for unlabelled experiments. 

These optimal designs are a specific type of orthogonal design that seeks to maximise the 

Gramian matrix (which is an algebraic characterisation of the equivalent statistical Fisher 

information matrix, up to a scale) of the conditional logit model, thereby combining efficiency 

and orthogonality. Street et al. (2005) showed that generating such designs by hand is relatively 

easy using a simple procedure that ensures minimum overlap of attribute levels across 

alternatives. Under the (very strict) assumption of utility balance, also referred to as utility 

neutral, it is possible to analytically compute the lowest possible D-error and therefore express 

D-efficiency as a percentage, where 100 percent indicates an optimal design. Optimal designs 

are subject to the same disadvantages of orthogonal designs as mentioned above. Further, they 

are mainly suitable for unlabelled experiments, and they may be problematic if a dominant 

attribute exists since the design forces attribute levels to be different across alternatives. For 

example, in comparing two alternative laptops having brand as an attribute with two levels, 

Apple and Dell, then agents are always forced to choose between a laptop of brand Apple and 

a laptop of brand Dell. Depending on the agent’s preference for an operating system (MacOS 
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or Windows) they may always choose the alternative with a specific brand and not trade-off on 

any of the other attributes. 

 

Random designs 

 

While efficient and orthogonal design strategies are systematic approaches in determining a 

fractional factorial design matrix X that contains a specific subset of choice tasks, an 

alternative strategy is simply using randomly generated choice tasks for each agent by selecting 

choice tasks from an explicitly generated full factorial design (containing all possible choice 

tasks), or by randomly generating choice tasks on-the-fly for each agent. This experimental 

design strategy also allows the application of constraints and can avoid dominant alternatives. 

Random designs do not suffer from multicollinearity unless the analyst imposes constraints 

that perfectly correlates attribute levels. 

 

As mentioned earlier, heterogeneous designs generally contain more information than a 

homogeneous design. A random design can be considered an extreme version of a 

heterogeneous design. While individual choice tasks in random designs may not capture a large 

amount of information, variation in the data is where random designs excel. The fact that each 

randomly generated choice task may capture different information allows random designs to 

decrease standard errors at a rate larger than .N  Therefore, for a large enough sample size N, 

the amount of information captured with a random design may approach that of a fixed efficient 

design. 

 

The main advantages of a random design strategy are that no experimental design skills are 

required (unless attribute level constraints or dominance checks need to be imposed), and the 

analyst does not need to formulate utility functions in advance since the data will be sufficiently 

rich to estimate any model. The main disadvantage is that it is an inefficient data collection 

strategy for small sample sizes and therefore should only be considered sample size is 

sufficiently large (typically at least 1,000 responding agents).  

 

Agent- or segment-specific experimental designs 

 

To reduce hypothetical bias in choice experiments, one can consider creating familiar choice 

tasks tailored around real experiences of agents instead of using a fixed design across the entire 

population (e.g., Hensher, 2010). One way of doing this is via a so-called pivot design in which 

attribute levels are absolute or relative pivots around reference attribute levels reported 

previously by an agent (Rose et al., 2008). Another way is to create a library of designs 

containing separate designs for specific segments within the population. Both methods can be 
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applied in conjunction with any experimental design strategy (efficient, orthogonal, or random) 

and are briefly explained below. 

 

Using route choice as a common application in transport, consider asking agents about a recent 

trip they have made and wanting to tailor the choice tasks around their reported trips. An agent 

may report a recent trip to work by car that took 25 minutes and where $5 toll was paid. Then 

in the choice experiment the same agent would be asked to imagine making the same trip to 

work again and choose between two or more route alternatives where route travel times and 

toll costs vary around the reported travel time and toll cost. A pivot design is a fixed matrix X 

consisting of pivot levels. In case relative pivots are used, the matrix contains for example 

levels -25%, 0%, and +25%, which means that for this specific agent the levels shown in the 

choice tasks would be 25, 30, and 35 minutes for travel time and $4, $5, and $6 for toll costs. 

Using relative pivot levels, attribute levels automatically scale to make sense for short and long 

trips. However, relative pivots do not always work, for example if an agent reports to have paid 

$0 in tolls, then the levels shown would be zero toll only. In such cases, one may want to revert 

to absolute levels, such as +$1, +$2, +$3. Pivoting is generally not needed around qualitative 

attributes, but it is possible to pivot around attributes with ordinal measurement scale by 

showing levels that have a ranking order close to the reference input. Implementing a pivot 

design in a survey instrument typically requires programming rules and logic to deal with all 

kinds of user input, which may impossible or challenging in certain survey tools.  

 

An alternative to using a fixed pivot design is to generate different designs ( )gX  for different 

population segments g, 1, , ,g G   and have them available in a library within the survey 

instrument. In our route choice experiment, we may for example create 24G   different 

designs based on four categories of trips (work, business, shopping, leisure), two modes of 

transport (car, public transport), and three distance categories (short, medium, long). Using the 

same agent as described above, for this agent we would look up and use the design with 

characteristics ‘work’, ‘car’, and ‘medium’ from the library. The advantage of this approach is 

that all experimental designs can be generated and checked in advance, although it may require 

generating many experimental designs.  

 

Step VI: Conduct pilot study 

 

The purpose of a pilot study, typically involving approximately 10 per cent of the total sample 

size (i.e., 1
10 N ), is to get feedback about the choice experiment and to make sure that a choice 

model can be estimated before starting the main data collection. In addition to asking for 

general feedback about the choice experiment, one can ask agents about the difficulty of the 
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choice tasks and how much they enjoyed it to get a sense of choice task complexity and 

engagement.  

 

One can use an efficient, orthogonal, or random design for the pilot study. An orthogonal 

design could be useful if (i) most attributes have only two or three levels, (ii) if there is no real 

concern about dominant alternatives (e.g., if the experiment is labelled with label-specific 

attributes, or if all attributes are normative without a clear ordering, or if no obvious preference 

structure exists among attribute levels), and (iii) if there do not exist unrealistic attribute level 

combinations. In other cases, one could use an efficient design if sample size is small or a 

random design if sample size is large, while in both cases applying possible constraints and 

excluding choice tasks with dominant alternatives. When using an efficient design in the pilot 

study, one could use noninformative (zero) priors to indicate that no prior information is 

available about the parameters. 

 

As an example, Table 4 shows an optimal orthogonal design for our laptop choice example 

with two alternatives using the method of Street et al. (2005). Syntax 1 in Appendix A shows 

how to generate this design in Ngene. One can check that the attribute levels for Laptop A (and 

Laptop B) are orthogonal since each attribute level combination appears the same number of 

times, for example combination (Core i5, 256 GB) appears once, (1 TB, $1500) appears once, 

(Core i3, $2100) appears once, etc. It is an optimal orthogonal design because there is minimum 

overlap, namely processor, amount of storage, and price are always different across the two 

alternatives. Despite it being optimally efficient (under the assumptions of linear utility 

functions, orthogonality, and utility balance or zero priors), it has two problematic choice tasks, 

namely Laptop B has a strictly dominant profile (and is expected to be always be chosen) in 

choice tasks 7 and 8. These choice tasks can easily be identified by substituting the attribute 

levels with their ranking order according to Table 2, e.g., Laptop A has attributes with ranking 

orders (3,3,3) in choice task 7, while Laptop B has a profile with ranking orders (2,2,1), making 

it better in each attribute. 

 

Table 4 shows an attribute-level balanced D-efficient design assuming noninformative (zero) 

priors (i.e., utility balance) for the laptop choice example, generated using the default swapping 

algorithm in Ngene where explicit constraints to avoid dominant alternatives have been applied 

(we refer to Syntax 2 in Appendix A for the Ngene script). For the computation of the D-errors, 

the following utility function was assumed: 

 

(Core i5) (Core i7)
1 Processor 2 Processor 3 Storage 4 Price( ) log( ) ,f x x x x      x      (8) 
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Table 4: Optimal orthogonal design for laptop choice example 

 Laptop A  Laptop B 

Choice task Processor Storage Price  Processor Storage Price 

1 Core i5 256 GB $1500  Core i7 512 GB $1800 

2 Core i7 512 GB $1500  Core i3 1 TB $1800 

3 Core i3 1 TB $1500  Core i5 256 GB $1800 

4 Core i7 256 GB $1800  Core i3 512 GB $2100 

5 Core i3 512 GB $1800  Core i5 1 TB $2100 

6 Core i5 1 TB $1800  Core i7 256 GB $2100 

7 Core i3 256 GB $2100  Core i5 512 GB $1500 

8 Core i5 512 GB $2100  Core i7 1 TB $1500 

9 Core i7 1 TB $2100  Core i3 256 GB $1500 

 

 

where (Core i5)
Processorx  and (Core i5)

Processorx  are dummy-coded binary variables using level ‘Core i3’ as the base 

level, storagex  is the hard-disk storage in GB (i.e., 256, 512, 1024), Pricex  is the price in dollars, 

and 1 2 3 4( , , , )     are parameters to be estimated. In this example we have applied a 

transformation via the natural logarithm on the storage variable under the hypothesis that there 

is diminishing benefit in additional storage space (i.e., at some point enough is enough).  

The D-error of the design in Table 5 for the above model specification is 0.0272, which is 

slightly better than the D-error of 0.0287 that would result from the design in Table 4 (which 

imposes orthogonality constraints but not dominance constraints) despite some overlap in the 

storage and price attribute. Efficiency of the design can be further improved by removing the 

attribute-level balance constraint; Table 6 shows the design with the lowest D-error without 

dominant alternatives (generated using the modified Federov algorithm in Ngene), which has 

no overlap and a D-error of 0.0225. The design in Table 6 is clearly not attribute-level balanced. 

Dummy (or effects) coded attributes will generally show a high degree of attribute-level 

balance across the two alternatives since a low representation of a certain level would not 

capture much information for the corresponding parameter and therefore lead to a high D-error. 

However, for other attributes it is typically more efficient to show the most extreme levels (at 

least when assuming zero priors), as this increases the trade-offs made in each choice task and 

hence increasing Fisher information, such that middle level 512 GB for storage and $1800 for 

price appear only once within the nine choice tasks.  
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Table 5: Attribute-level balanced D-efficient design with noninformative zero priors without 

dominant alternatives for laptop choice example  

 Laptop A  Laptop B 

Choice task Processor Storage Price  Processor Storage Price 

1 Core i7 1 TB $2100  Core i3 256 GB $1800 

2 Core i3 256 GB $1500  Core i7 1 TB $2100 

3 Core i7 512 GB $1500  Core i5 1 TB $2100 

4 Core i5 1 TB $1500  Core i7 256 GB $2100 

5 Core i3 1 TB $1800  Core i5 512 GB $1800 

6 Core i3 512 GB $2100  Core i7 256 GB $1500 

7 Core i7 512 GB $1800  Core i5 512 GB $1500 

8 Core i5 256 GB $2100  Core i3 1 TB $1500 

9 Core i5 256 GB $1800  Core i3 512 GB $1800 

 

After having generated an experimental design (or a library of multiple segment-specific 

designs), one needs to choose a survey instrument. For the pilot study one may simply use a 

pen and paper questionnaire or an Excel spreadsheet (e.g., Black et al., 2005), but in most cases 

one would implement the choice experiment in an online (for web-based surveys) or offline 

(for CAPI surveys) software tool that will also be used in the main study. Tools that support 

choice experiments include SurveyEngine, Confirmit, Nebu, and Qualtrics (with choice-based 

conjoint add-on module). Most free online survey tools do not support choice experiments, but 

for simple choice experiments one may use the tricks such as creating multiple-choice 

questions with images that are screenshots of profiles or whole choice tasks.  

 

Table 6: D-efficient design with noninformative zero priors without dominant alternatives for 

laptop choice example 

 Laptop A  Laptop B 

Choice task Processor Storage Price  Processor Storage Price 

1 Core i5 256 GB $2100  Core i3 1 TB $1500 

2 Core i5 1 TB $1500  Core i7 256 GB $2100 

3 Core i5 1 TB $2100  Core i7 256 GB $1500 

4 Core i5 256 GB $1500  Core i3 1 TB $2100 

5 Core i3 256 GB $1500  Core i7 1 TB $1800 

6 Core i3 256 GB $1500  Core i5 1 TB $2100 

7 Core i7 256 GB $1500  Core i3 512 GB $2100 

8 Core i7 256 GB $2100  Core i3 1 TB $1500 

9 Core i5 256 GB $1500  Core i7 1 TB $2100 
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As mentioned in Step I, for labelled experiments it is important to randomise (across agents, 

not within an agent) the arrangement of labelled alternatives shown in choice tasks to be able 

to account for possible presentation order effects of alternatives (e.g., left-to-right bias). In 

model estimation, one would include a generic dummy coded variable in the utility functions 

of all alternatives that indicates the order in which the alternative appeared in the choice task 

(essentially making order an ‘attribute’ of each alternative).  

 

To account for presentation order effects of attributes, one may also want to randomise (again 

across agents, not within an agent) the order in which attributes are shown to respondents as 

their relative position (e.g., top or bottom) may have a significant impact upon the behavioural 

responses of agents completed choice tasks, also referred to as. For example, Kjaer et al. (2006) 

varied the location of the price attribute, presenting it as either the first attribute or last attribute 

shown in the task. They found that the order of the price attribute led to statistically significant 

differences in price sensitiveness, however they concluded that attribute presentation order did 

not result in different decision rules being used by the sampled respondents. In an earlier study, 

Scott and Vick (1999) reversed the order in which attributes were shown to responding agents 

and found statistically significant evidence of an attribute ordering effect on the model 

outcomes. On the other hand, Farrar and Ryan (1999) found no such evidence when they 

swapped the first two attributes with the bottom two attributes. Likewise, Boyle and Özdemir 

(2009) suggest that it is not a forgone conclusion that the ordering of attributes will affect 

choices and statistical results; it is likely to be a study-specific issue. 

 

After the pilot study, the analyst would use the collected choice data to estimate a conditional 

logit model and verify that the model parameters can be estimated resulting in parameter 

estimates ˆ ,k  1, , ,k K   with corresponding standard errors ks  that indicate the precision 

(reliability) of the estimates. In the pilot study, it is likely that some or all parameters are not 

statistically significant given the relatively small sample size. For parameters that are 

statistically significant, one can check whether they have the expected signs (e.g., price or cost 

coefficients are expected to be negative). If some parameters have an unexpected sign when 

using an efficient design, then one may want to check for strong correlations between certain 

attributes in profiles. For example, if in our laptop choice experiment the price attribute is 

always high (low) when storage space is large (small), then the parameter for price may become 

positive if agents generally prefer to have a large hard-disk. This can be remedied by including 

profiles with a low price and large storage space or high price and small storage space (while 

at the same time avoiding that this alternative becomes dominant via trade-offs on other 

attributes) or using an orthogonal design (which avoids such correlations by definition but may 

suffer from dominant alternatives). 
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Since parameter estimates by themselves are difficult to assess, one often looks at marginal 

rates of substitution (MRS) between attributes, of which WTP is a special case. The MRS 

represents the amount of attribute l (i.e., the cost attribute in case of WTP) one has to give up 

for the gain of one additional unit of attribute k such that the utility remains the same. For 

example, in our laptop choice experiment with utility function (8) the WTP to have a Core i7 

processor instead of a Core i3 processor equals 2 4/   dollars, and the WTP for an increase 

in hard-disk storage is 3 storage 4( / ) /x   dollars per GB, based on a chosen storage level storage.x   

 

A pilot study may also produce useful parameter priors for generating a more efficient design 

for the main study as further explained in the next section. 

 

Step VII: Conduct main study 

 

The main study can use the experimental design for the choice experiment as used in the pilot 

study (possibly after making some minor changes). However, one could improve the efficiency 

of the data collection by generating a new experimental design using information from the pilot 

study. In particular, parameter values ˆ
k  estimated using data from the pilot study can replace 

the zero priors used previously. We refer to such non-zero priors are informative local priors. 

Using informative local priors means that we no longer assuming utility balance (i.e., equal 

choice probabilities) but rather use choice probabilities that are expected to be closer to the 

truth. This results in a more accurate measure of Fisher information, thereby allowing a better 

optimisation of the experimental design.  

 

Suppose that the parameter estimates obtained via a pilot study for our laptop choice 

experiment are given by 1̂ 0.35   and 2
ˆ 0.5   (for the dummy coded processor attribute), 

3
ˆ 0.6   (for the logarithmic storage attribute), and 4

ˆ 0.004    (for the price attribute). Using 

these values as local priors (instead of zeros) we can again generate a D-efficient design (see 

Syntax 4 in Appendix A for the Ngene syntax). Assuming that attribute level balance is not 

required, we find the experimental design shown in Table 7. This design has a D-error of 

0.0413. It is important to emphasise that this D-error is not comparable to D-errors of designs 

that were generated under different prior assumptions such as the designs generated in the 

previous section using zero priors. If the informative local priors equal the true parameter 

values, then the design in Table 7 captures maximum information. One can observe that the 

price levels across the two alternatives in Table 7 are much more balanced than in Table 5. 

This is a direct effect of using informative local priors. Since a prior value -0.004 for the price 

parameter indicates that price is relatively important in choosing a laptop (see discussion 

below), making comparisons only between extreme price points $1,500 and $2,100 would often 

result in choice tasks where price dominates. In such cases, little to no trade-offs are made with 
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respect to processor and storage and hence little information is captured with respect to these 

two attributes. Therefore, using informative priors when generating a D-efficient design assists 

in ensuring that agents make trade-offs across all attributes, especially when one or more 

dominant attributes exist. 

 

The relative importance of each attribute in the experimental design can be determined by 

looking at the relative impact each attribute has on utility (Orme, 2005). Considering again the 

laptop choice example and the given priors, the processor attribute contributes between 0 (Core 

i3) and 0.5 (Core i7) to utility, the storage attribute contributes between 0.6 log(256) 3.33   

and 0.6 log(1024) 4.16   to utility, and the price attribute contributes between 

0.004 1500 6     and 0.004 2100 8.4     to utility. Looking at the range in utility 

contribution, in absolute terms, processor makes a maximum difference of 0.5, storage makes 

a maximum difference of 0.83, and price makes a maximum difference of 2.4 in utility. 

Expressing this in percentages, the relative importance of processor, storage, and price is 13 

percent, 22 percent, and 64 percent, respectively. In other words, price is the most important 

attribute in the choice experiment. We point out that assessment of attribute importance cannot 

be based on the size of corresponding parameter values since measurement scales and units of 

attributes are different.  

 

Table 7: D-efficient design with informative local priors without dominant alternatives for 

laptop choice example 

 Laptop A  Laptop B 

Choice task Processor Storage Price  Processor Storage Price 

1 Core i5 1 TB $1500  Core i7 256 GB $1500 

2 Core i7 256 GB $1800  Core i3 1 TB $2100 

3 Core i5 1 TB $1800  Core i3 256 GB $1500 

4 Core i5 256 GB $1800  Core i3 1 TB $1500 

5 Core i5 256 GB $1800  Core i7 1 TB $2100 

6 Core i7 1 TB $2100  Core i3 256 GB $1800 

7 Core i3 1 TB $1800  Core i5 256 GB $2100 

8 Core i7 256 GB $1500  Core i3 1 TB $1800 

9 Core i5 256 GB $1500  Core i7 1 TB $2100 

 

While a D-efficient design based on informative local priors would be able to capture 

maximum information under ideal circumstances where prior assumptions are correct, such 

priors are in practice merely a best guess and will often be considerably different from the final 

parameter estimates, resulting in some loss of information. The more accurate the informative 

local priors are, the less information is lost in the data collection. If the informative local priors 
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turn out to be entirely different from the actual parameter values, then the data collection can 

in fact become very inefficient (Walker et al., 2017). To make a D-efficient design more robust 

against prior misspecification, informative Bayesian priors have been proposed (Sándor and 

Wedel, 2001). A Bayesian prior is different from a local prior in that it does not consider a 

single value for the prior, but rather considers a range of values via a predefined probability 

distribution. For example, if one believes that the parameter value for the price attribute in our 

laptop example lies somewhere between 0 and -0.008 then one could consider a Bayesian prior 

with a uniform distribution between the two values. In other words, Bayesian priors take the 

inherent unreliability about prior parameter values into account. The degree of unreliability of 

each prior can be obtained via standard errors of the parameter estimates in a pilot study. 

Assuming parameter estimate ˆ
k  and its corresponding standard error ks  that indicates the 

degree of unreliability of the parameter estimate, a natural choice for a Bayesian prior is to 

assume a normal distribution with mean ˆ
k  and standard deviation .ks  The Bayesian D-error 

of a design indicates the expected (mean) D-error over the given prior distributions and can be 

computed via Monte Carlo simulation by taking quasi-random draws from the prior 

distributions (Bliemer et al., 2008). 

 

Continuing our laptop choice example, assume that the previously mentioned parameter 

estimates have standard errors 1 0.2s   and 2 0.3s   (associated with the dummy coded 

processor parameters), 3 0.4s   (associated with the storage parameter), and 4 0.0025s   

(associated with the price parameter). We generated a Bayesian D-efficient design shown in 

Table 8 (using Ngene Syntax 5 listed in Appendix A), which has a Bayesian (mean) D-error of 

0.0499. The Bayesian D-error will always be larger than the D-error of a design that is 

optimised using local priors, but the associated Bayesian D-efficient design will result in less 

loss of information when the true parameter values deviate from the informative local priors. 

Therefore, it is recommended to use a Bayesian D-efficient design as a more robust design 

strategy, despite the increase in expected D-error. 

 

An often-asked question is “What sample size do I need?” The answer is that this is case-

specific, where in some studies only 50 agents are needed to get statistically significant and 

reliable parameter estimates, whilst in other studies possibly thousands of respondents are 

needed. If alternatives include attributes that are all highly important (such as the cost attribute 

in most studies), then all parameters can be estimated with a smaller sample size. In contrast, 

if most attributes are only marginally relevant in making a choice, then it will require a large 

sample size to obtain statistically significant parameter estimates. Some rules of thumb have 

been discussed in the literature, see Rose and Bliemer (2013) for an overview, but one can 

make some specific minimum required sample size calculations if informative parameter priors 

are available. Using parameter estimates ˆ ,k  1, , ,k K    from a pilot study as informative 
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local priors, we can compute the Fisher information matrix and the related asymptotic variance-

covariance matrix .Ω  The minimum sample size *
kN   for parameter k, such that it can be 

estimated at a given level of statistically significance, can be computed as (Rose and Bliemer, 

2013; De Bekker-Grob et al., 2015): 

 
2

* /2 ,
ˆk kk

k

t
N 



 
   
 

          (9) 

 

where kk  is the asymptotic variance of parameter k and /2t  indicates the (two-sided) t-value 

at the desired level of significance   (e.g., 1.96 if 5%  ). Values *
kN  are also referred to as 

S-estimates, and the minimum sample size *N   required to estimate all K parameters at a 

statistically significant level, i.e., * *max { }k kN N  is also known as the S-error (Rose and 

Bliemer, 2013). Given that the above minimum sample size computations rely heavily on prior 

parameter values, they should only be used when using informative priors that are sufficiently 

reliable, and they should only be used as ballpark figures (e.g., whether one needs tens, 

hundreds, or thousands of respondents). Note that if a design is blocked, these minimum sample 

size estimates need to be multiplied by the number of blocks. 

 

Table 8: D-efficient design with informative Bayesian priors without dominant alternatives for 

laptop choice example 

 Laptop A  Laptop B 

Choice task Processor Storage Price  Processor Storage Price 

1 Core i7 1 TB $2100  Core i3 256 GB $1800 

2 Core i5 1 TB $2100  Core i7 256 GB $1800 

3 Core i7 1 TB $1800  Core i3 256 GB $1500 

4 Core i5 256 GB $1500  Core i3 1 TB $1500 

5 Core i7 256 GB $1800  Core i5 1 TB $1500 

6 Core i3 1 TB $1800  Core i5 256 GB $1500 

7 Core i5 256 GB $2100  Core i3 1 TB $1800 

8 Core i5 1 TB $2100  Core i7 256 GB $2100 

9 Core i7 256 GB $1500  Core i3 1 TB $2100 

 

Final remarks 

 

This chapter has set out to define the necessary steps to follow in generating a choice survey. 

Whilst each study will differ in terms of the research objectives, empirical application area, 

and sampling requirements, following the seven steps outlined here represents current best 
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practice for all choice studies. In any case, six of the seven steps are required to collect any 

choice data, with only the possibility of not conducting a pilot study being feasible. This does 

not mean that one should not undertake some form of pilot study however, and indeed, it is 

highly recommended to do so. Unfortunately, some applied economic fields are better at this 

than others.  

 

Of the seven steps, most are fairly straightforward and easy to complete. Of course, given the 

range of possible applications that choice experiments can be applied to, the ease of generating 

a stated choice experiment should never be taken for granted. Further, those wishing to 

undertake a stated choice experiment should have more than a working understanding of 

discrete choice methods, in particular how to properly specify utility functions such that all 

parameters are identifiable. It is often easy to make what appear to be small innocuous mistakes 

that can have significant ramifications that only become apparent after the data has been 

collected. For example, in a model with a status quo alternative containing a (dummy or effects 

coded) qualitative attribute it is important that the fixed attribute level of the status quo 

alternative also appears in one or more other alternatives to avoid identification issues in model 

estimation (see Copper et al., 2012). Any person attempting to design stated choice experiments 

is encouraged to first properly immerse themselves within the greater literature to fully 

understand the subtle nuances of discrete choice modelling. 

 

Finally, analysts should be aware of the possible existence of hypothetical bias in choice 

experiments, e.g., due to the absence of consequences in hypothetical choice tasks or the 

difficulty in imagining alternatives that may not yet exist. For an extensive overview of 

empirical evidence of hypothetical bias in choice experiments we refer to Haghani et al., 

(2021a). To make choices more realistic and incentive compatible one could simulate 

experiences (e.g., Fayyaz et al., 2021) or introduce consequences (MacDonald et al., 2016). 

Several other methods exist to reduce hypothetical bias, including cheap talk, solemn oath, 

honesty priming, indirect questioning, time-to-think, and certainty scales, see Haghani et al. 

(2021b) for an overview. Stated choice experiments are by no means perfect but are often 

considered the best alternative in the absence of, or in conjunction with, revealed choice data.  

 

Appendix A: Ngene syntax examples 

 

The following Ngene syntax scripts were used to generate the experimental designs reported 

in this chapter. Syntax 1 was used to generate the optimal orthogonal design presented in Table 

4. Syntax 2 and 2 were used to generate the D-efficient designs presented in Tables 5 and 6, 

respectively, where the only difference is that the latter uses the modified Federov algorithm, 

which does not impose attribute level balance (unlike the default swapping algorithm in Ngene 
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that imposes attribute level balance when possible). The parameter priors in Syntax 2 and 3 are 

essentially set to zero, but to indicate the ranking order of the attribute levels consistent with 

Table 2 (such that the algorithm can automatically detect and avoid dominant alternatives) very 

small positive and negative values are used, which are small enough such that the contribution 

to utility of each attribute is near-zero (i.e., price has a disutility of at most 

0.0000001 2100 0.00021 0   ). 

 

Syntax 1: Optimal orthogonal design 

design 
;alts = LaptopA, LaptopB   ? two alternatives 
;rows = 9                  ? design size of 9 choice tasks 
;orth = ood                ? generate optimal orthogonal design 
                           ? uses algorithm of Street et al. (2005) [default] 
 
;model: 
U(laptopA) = proc * PROCESSOR[1,2,0] 
           + stor * STORAGE[256,512,1024]  
           + cost * PRICE[1500,1800,2100]  
 
                           ? PROCESSOR: 0=Core i3 (base), 1=Core i5, 2=Core i7 
                           ? STORAGE: 256, 512, 1024 GB 
                           ? PRICE: $1500, $1800, $2100 
           / 
U(laptopB) = proc * PROCESSOR  + stor * STORAGE + cost * PRICE 
$ 

 

 

Syntax 2: D-efficient design with attribute level balance using uninformative priors 

design 
;alts = LaptopA*, LaptopB* ? checks for dominant alternatives and duplicates 
;rows = 9                  ? design size of 9 choice tasks 
;eff = (mnl,d)             ? minimise D-error for the multinomial logit model 
                           ? uses column-based swapping algorithm [default] 
 
;model:                    ? using near-zero priors indicating ranking order 
 
U(laptopA) = proc.dummy[0.0001|0.0002] * PROCESSOR[1,2,0]            
           + stor[0.00001]             * STORAGE[5.545,6.238,6.931]  
           + cost[-0.0000001]          * PRICE[1500,1800,2100]        
                           ? PROCESSOR = 0(Core i3, base), 1(Core i5), 2(Core i7) 
                           ? STORAGE = log(256), log(512), log(1024) GB 
                           ? PRICE = $1500, $1800, $2100 
           / 
U(laptopB) = proc * PROCESSOR  + stor * STORAGE + cost * PRICE 
$ 
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Syntax 3: D-efficient design without attribute level balance using uninformative priors 

design 
;alts = LaptopA*, LaptopB* ? check for dominant alternatives and duplicates 
;rows = 9                  ? design size of 9 choice tasks 
;eff = (mnl,d)             ? minimise D-error for the multinomial logit model 
;alg = mfederov            ? uses row-based modified Federov algorithm 
 
;model:                    ? using near-zero priors indicating ranking order 
 
U(laptopA) = proc.dummy[0.0001|0.0002] * PROCESSOR[1,2,0]            
           + stor[0.00001]             * STORAGE[5.545,6.238,6.931]  
           + cost[-0.0000001]          * PRICE[1500,1800,2100]        
                           ? PROCESSOR = 0(Core i3, base), 1(Core i5), 2(Core i7) 
                           ? STORAGE = log(256), log(512), log(1024) GB 
                           ? PRICE = $1500, $1800, $2100 
           / 
U(laptopB) = proc * PROCESSOR  + stor * STORAGE + cost * PRICE 
$ 

 

 

Syntax 4 and 5 were used to generate D-efficient designs with informative priors in Tables 7 

and 8, respectively. Generating Bayesian D-efficient design requires computing the mean D-

error assuming probability distributions for the parameter priors, which requires numerical 

simulation. In Syntax 5 we used 200 Sobol draws. The number of draws required increases 

exponentially with the number of Bayesian priors (e.g., 2K  or 3K  for distributions with small 

standard deviations, 4K  or more for distributions with large standard deviations) and it is 

recommended to keep the number of Bayesian priors limited (typically not more to eight to 

ten) and use local priors for the remaining parameters (if any). In choosing which parameters 

to allocate a Bayesian prior, it is advised to give priority to attributes with a high relative 

importance as they will have the largest influence on utility and therefore are most sensitive to 

prior misspecification.  

 
 

Syntax 4: D-efficient design without attribute level balance using informative local priors 

design 
;alts = LaptopA*, LaptopB* ? check for dominant alternatives and duplicates 
;rows = 9                  ? design size of 9 choice tasks 
;eff = (mnl,d)             ? minimise D-error for the multinomial logit model 
;alg = mfederov            ? uses row-based modified Federov algorithm 
 
;model:                    ? using near-zero priors indicating ranking order 
 
U(laptopA) = proc.dummy[0.35|0.5] * PROCESSOR[1,2,0]            
           + stor[0.6]            * STORAGE[5.545,6.238,6.931]  
           + cost[-0.004]         * PRICE[1500,1800,2100]        
                           ? PROCESSOR = 0(Core i3, base), 1(Core i5), 2(Core i7) 
                           ? STORAGE = log(256), log(512), log(1024) GB 
                           ? PRICE= $1500, $1800, $2100 
           / 
U(laptopB) = proc * PROCESSOR  + stor * STORAGE + cost * PRICE 
$ 
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Syntax 5: D-efficient design without attribute level balance using informative Bayesian priors 

design 
;alts = LaptopA*, LaptopB* ? check for dominant alternatives and duplicates 
;rows = 9                  ? design size of 9 choice tasks 
;eff = (mnl,d,mean)        ? minimise (Bayesian) mean D-error 
;alg = mfederov            ? uses row-based modified Federov algorithm 
;bdraws = sobol(200)       ? quasi-random Sobol draws for Bayesian priors 
 
;model:                    ? using near-zero priors indicating ranking order 
 
U(laptopA) = proc.dummy[(n,0.35,0.2)|(n,0.5,0.3)] * PROCESSOR[1,2,0]            
           + stor[(n,0.6,0.4)]                    * STORAGE[5.545,6.238,6.931]  
           + cost[(n,-0.004,0.0025)]              * PRICE[1500,1800,2100]        
                           ? PROCESSOR = 0(Core i3, base), 1(Core i5), 2(Core i7) 
                           ? STORAGE = log(256), log(512), log(1024) GB 
                           ? PRICE= $1500, $1800, $2100 
           / 
U(laptopB) = proc * PROCESSOR  + stor * STORAGE + cost * PRICE 
$ 
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