Decision rules

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Decision rules

The whole story

- Inidividuals make choices
- Analyst represents choices in a model
 - 1. Define a structure
 - 2. Estimate parameters
 - 3. Apply model and produce outputs

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Real-world process

- Decision-maker:
 - faces choice situation
 - uses an internal process
 - reaches outcome
- Analyst:
 - observes inputs (maybe in part)
 - observes outcome
 - does NOT observe process

From real-world process to mathematical model

Step 1: observe choice

 \Box dependent variable for our model (Y)

Step 2: identify factors influencing choices

 characteristics of alternatives (x), choice setting (w), and decision-maker (z)

Step 3: Build model

$$\Box Y = m(\beta, x, w, z), \text{ where } m() \text{ reflects model} \\ \text{structure and } \beta \text{ are parameters}$$

Decision rules

- Mathematical representation of choice process
- Does not imply that people make choices according to the rules we use
- □ Simply *convenient* way of representing process
- Factors to consider
 - behavioural realism
 - tractability
 - properties of outputs

Compensatory *vs* non-compensatory

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Compensatory vs non-compensatory

Two contrasting approaches

Compensatory models

- □ Changes in one attribute can be counteracted by changes in another attribute
- □ Theory: increases in cost can always be counteracted by reductions in time
- $\hfill\square$ Practice: depends on size of change that is needed
- □ Key foundation of random utility maximisation (RUM)

Non-compensatory and semi-non-compensatory models

- □ Some changes cannot be counteracted, or only partially
- □ Non-compensatory example: Elimination by aspects (EBA)
- Semi-non-compensatory example: Random Regret Minimisation (RRM)

Compensatory vs non-compensatory

Elimination by aspects (EBA): overview

Gradual elimination of alternatives

Attribute	Drug A	Drug B	Drug C	Drug D	Rule
Cost	\$5 per day	\$10 per day	\$15 per day	\$20 per day	$Cost \leqslant \$15$
Risk	1 in 500	1 in 1,000	1 in 2,000	1 in 5,000	Risks \leqslant 1 in 1,000
Success	60%	70%	80%	90%	Success rate $\ge 75\%$

□ Clearly not compensatory

Key reference: Tversky, A. (1972), 'Elimination by aspects: A theory of choice', Psychological Review 79, 281-299.

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

General concept of utility maximisation

- Notion grounded in micro-economic theory
- Alternatives characterised by utility
 - based on attributes which influence behaviour
- Assume rational behaviour
 - choose alternative with highest utility
- Trade-off behaviour:
 - good performance on one attribute compensates for poor performance on another
 - e.g. higher cost compensated by faster journey

Key reference: Marschak, J. (1960), 'Binary choice constraints on random utility indications', in K. Arrow, ed., Stanford Symposium on Mathematical Methods in the Social Sciences, Stanford University Press, Stanford, CA, pp. 312-329.

Utility specification

Decision-maker

- \Box Person *n*, with $n = 1, \ldots, N$
- □ Faces T_n choice situations, with $t = 1, ..., T_n$
- \Box Characteristics z_n (observed)
- Vector of preferences/tastes β_n (estimated)

Choice-set and context

- \Box J mutually exclusive alternatives, with $j = 1, \ldots, J$
- \Box Choice context described by w_{nt}
- \Box Alt. *j* described by set of *K* attributes

$$\Box$$
 In situation *t*, $x_{jnt} = \langle x_{jnt,1}, ..., x_{jnt,K} \rangle$

$$U_{jnt} = f(\beta_n, x_{jnt}, w_{nt}, z_n)$$

Utility and choice

- \Box For now, drop indices *n* and *t*
- \Box Choice index given by Y
- Alternative with highest utility is chosen

 $Y = i \iff U_i > U_j \ \forall j \neq i$

 Observation: only differences in utility matter

$$egin{aligned} U_j^* &= U_j + \Delta \,\,orall j \ Y^* &= Y \,\,orall \Delta \end{aligned}$$

A simple example

- Choice between two train services
- Alternatives can only be distinguished via their attributes
- Both attributes are numerical
- □ Use a linear in attributes specification
- □ If T_1 increases by one minute, U_1 changes by β_T
- \Box Expect β_T and β_C to be negative

Unlabelled choice alternatives

Train 1 Train 2

Travel time (T)	45 min	30 min
Travel cost (C)	£7	£12

Utility specification

$$U_1 = \beta_T T_1 + \beta_C C_1$$

$$U_2 = \beta_T T_2 + \beta_C C_2$$

Choice outcome

- Choice depends on differences in utilities
- If sensitivity to time increases, differences in time matter more (same for cost)
- If all sensitivities increase by same factor, order of preferences does not change

Utility specification

$$U_1 = \beta_T T_1 + \beta_C C_1$$

$$U_2 = \beta_T T_2 + \beta_C C_2$$

Choice outcome

$$Y = 1 \iff \beta_T (T_1 - T_2) > \beta_C (C_2 - C_1)$$
$$\beta_T, \beta_C < 0 \Rightarrow \frac{\beta_T}{\beta_C} (T_2 - T_1) > C_1 - C_2$$

Example for our choice task: $T_1 > T_2$ and $C_1 < C_2$

- \Box Option 1 will be chosen if $\frac{\beta_T}{\beta_C} < \frac{C_2 C_1}{T_1 T_2}$
 - not willing to pay extra cost to save time
- □ Option 2 will be chosen if $\frac{\beta_T}{\beta_C} > \frac{C_2 C_1}{T_1 T_2}$
- No information from observations with dominant alternative
- $\hfill\square$ To find β values, need many observations with changing attribute levels

Choice scenario							
	Train 1	Train 2					
Travel time (T)	45 min	30 min					
Travel cost (C)	£7	£12					

Choice outcome

$$Y = 1 \iff \frac{\beta_T}{\beta_C} < \frac{C_2 - C_1}{T_1 - T_2}$$

We can solve this graphically

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Shortcomings of deterministic utility theory

- $\hfill\square$ Often make observations of
 - inconsistent behaviour
 - non-transitive preferences
- □ Cause of inconsistencies cannot be specified in deterministic framework
 - lack of analyst's knowledge of individual's decision processes
 - unobserved attributes
 - unobserved heterogeneity
 - incorrectly measured attributes
 - poor information on availabilities
 - non-linearities in preferences
- $\hfill\square$ To accommodate this, we move to a probabilistic model

Random utility theory

- \Box Utility U_{jn} is a random variable
 - deterministic part V_{jn}
 - random part ε_{jn}
- Deterministic part specified to capture role of observed explanators
- $\Box \ \varepsilon_{jn}$ measures deviation from modelled utility for alternative *j* and respondent *n*

Additive utility structure

$$U_{jn} = V_{jn} + \varepsilon_{jn}$$

Deterministic part of utility $V_{jn} = f(\beta_n, x_{jn})$

Implications for probabilities

- Deterministic utility theory
 - Alternative with highest utility is chosen
- Random utility theory
 - Probability of choosing alternative increases with deterministic utility
- \square Probability of person *n* choosing alternative *i* given by:

$$P_{in} = \Pr\left(V_{in} + \varepsilon_{in} > V_{jn} + \varepsilon_{jn} \; \forall j \neq i\right)$$

Binary deterministic choice

Binary probabilistic choice

Only differences in utility matter

□ Probability of person *n* choosing alternative *i* given by:

$$P_{in} = \Pr\left(V_{in} + \varepsilon_{in} > V_{jn} + \varepsilon_{jn} \; \forall j \neq i\right)$$

- \Box Adding same value to V_{jn} $\forall j$ will not change probabilities
- Observation: only differences in utilities matter
- □ Implication: parameters only identified if they capture differences across alternatives
 - require normalisation for e.g. alternative specific constants