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The basics

Multinomial logit model

 Abbreviated as the MNL model, also referred to as the conditional logit model
 Most basic random utility model
 Typically used as a starting point
 Many extensions exist



Choice Modelling Academy © 5

 Endogenous variable           (continuous)

 Exogeneous variables
 Coefficients      

  

  
    

The basics

Econometric model

 Endogenous variable             (binary)

 Exogeneous variables
 Coefficients      

  

  
                                 

0 1 1 2 2ni i i ni i niV x x     
Gumbel(0, )ni 

1, if  for all 
0, otherwise

ni ni nj nj
ni

V V j
y

    
n n ny V  

0 1 1 2 2n n nV x x     
Normal(0, )n 

niy

1 2, ,ni nix x 

0 1 2, , ,i i i  

ny

1 2, ,n nx x 

0 1 2, , ,  

MULTINOMIAL LOGIT MODEL LINEAR REGRESSION MODEL

Indices:    Observation n  –  Alternative i,j
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The basics

Core assumptions on random components

     ’s are Gumbel distributed
 Gumbel is also known as Extreme Value type I (EV1) distribution
 Variance is inversely related to scale parameter     :  

     ’s are independent and identically distributed (IID)
 No correlations across alternatives and observations
 Extent of noise across alternatives and observations is the same
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The basics

Utility components

niU  niV  ni

 Deterministic part

 Represents explained choice 
behaviour, accounts for variables 
included in the model

 Relative size depends on 
importance of included variables

 Random part

 Represents unexplained choice 
behaviour, accounts for all 
variables not included in the model

 Relative size is given by                   
its standard deviation,      
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The basics

Large scale parameter

 Choice behaviour is more deterministic (i.e., attribute changes matter more)
 Typically means that choices are forecast with higher reliability

 But very large scale can also indicate issues with data or overfitting

niU  niV  ni


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The basics

Small scale parameter

 Choice behaviour is more random (high error variance)
 Typically means that choices are forecast less well

 Can indicate problems with data and/or model specification

niU  niV  ni
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The basics

Multinomial logit formula

 The probability that decision-maker n chooses alternative i among alternatives              equals
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is Euler’s number
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The basics

Scale parameter      is not identifiable

 Scale parameter is data set specific but cannot be separately estimated
 Common normalisation:



1 Gumbel(0,1)such that
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The basics

Normalising scale does not mean that error variance is fixed

 Scale parameter is absorbed into coefficients of V
 In the multinomial logit formula, we can replace                                                             

with

 Estimated coefficients         jointly capture preferences (     ) and scale (   )
 Scale should be considered when combining data sets (see Week 6)
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Since scale parameter     is data set 
specific, estimated coefficients        are 

not comparable across studies
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Model properties

Only differences in utility matter

 Choice probabilities are not affected when the same number is added to all utilities

 The probability that decision-maker n chooses alternative i among alternatives              equals
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Model properties

Only differences in utility matter – Example

 Assume the following utilities:
  
  

 Probability that Drug A is chosen:

Drug A 2V 

Drug B 3V 

Drug A
exp(2)

exp(2) exp(3)
exp(0)

exp(0) exp(3 2)
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 Assume the following utilities:
  
  

 Probability that Drug A is chosen:

Drug A 5V 

Drug B 6V 
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exp(5)

exp(5) exp(6)
exp(0)

exp(0) exp(6 5)
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1 exp(1)
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Δ = 1 Δ = 1
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Model properties

Only differences in utility matter – Example

 Assume the following utilities:
  
  

 Probability that Drug A is chosen:

Drug A 0V 

Drug B 1V 

Drug A
exp(0)

exp(0) exp(1)
0.27

P 




 Assume the following utilities:
  
  

 Probability that Drug A is chosen:

Drug A 4V 

Drug B 3V 
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exp( 4)

exp( 4) exp( 3)
exp(0)

exp(0) exp( 3 4)
1
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
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Model properties

Independence of Irrelevant Alternatives (IIA)

 Assume the following utilities:
  
  

 Relative probabilities of Drugs A and B:

 Assume the following utilities:
  
  
  

 Relative probabilities of Drugs A and B:

Drug A 2V 

Drug B 3V 

Drug A

Drug B

exp(2)
exp(2) exp(3) 0.37exp(3)
exp(2) exp(3)

P
P

 



Drug A 2V 

Drug B 3V 

Drug C 5V 

Drug A

Drug B

exp(2)
exp(2) exp(3) exp(5) 0.37exp(3)
exp(2) exp(3) exp(5)

P
P

  

 

 The relative probability of someone choosing between two options is independent of other 
alternatives in the choice set
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 Are relative choice probabilities always independent of the alternatives?

 IIA is a strong assumption and may not hold in practice
 Extensions of the MNL model exist to relax the IIA assumption

Model properties

Is IIA realistic?
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Numerical example

Assumptions

 Assume the following utilities:
  
  

 What is the probability that a decision-maker chooses Drug A?

 

 Assume that

Drug A 2V 

Drug B 3V 

 
 

Drug A Drug A Drug B

Drug A Drug B

Pr

Pr 2 3

P U U

 

 

   

Drug A Drug B, Gumbel(0,1) 
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Numerical example

Spreadsheet

 See MNL probabilities.xlsx
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Numerical example

Deterministic part of utility

                  
   

Drug A 2V 

Drug B 3V 
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Numerical example

Calculation of choice probabilities via multinomial logit formula

  
  

Drug A Drug A Drug B
Drug A / ( )V V VP e e e   

Drug B Drug A Drug B
Drug B / ( )V V VP e e e   
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Numerical example

Calculation of choice probabilities via simulation

  
 Simulated draws from standard Gumbel distribution

Drug A Drug A, Gumbel(0,1) 

 
Drug A

ln ln( )u



 



where u is a 
random number 
between 0 and 1

 
Drug B

ln ln( )u



 


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Numerical example

Simulated random utilities

  
  

Drug A Drug A Drug AU V  

Drug B Drug B Drug BU V  
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Numerical example

Simulated choices

                   (Drug A is chosen) if                                  (                   otherwise)
                   (Drug B is chosen) if                                  (                   otherwise)

Drug A Drug BU U

Drug B Drug AU U
Drug A 1y 

Drug B 1y 
Drug A 0y 

Drug B 0y 
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Numerical example

Simulated choice probabilities

  
   

Drug A Drug Aaverage( )P y

Drug B Drug Baverage( )P y
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