The multinomial logit model

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

The multinomial logit model

Outline

- The basics
- Model properties
- Numerical example

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Multinomial logit model

- Abbreviated as the MNL model, also referred to as the conditional logit model
- Most basic random utility model
- **Typically used as a starting point**
- Many extensions exist

Econometric model

MULTINOMIAL LOGIT MODEL

- **Endogenous variable** y_{ni} (binary)
- **Exogeneous variables** x_{ni1}, x_{ni2}, \dots
- Coefficients $\alpha_{i0}, \alpha_{i1}, \alpha_{i2}, \dots$

$$V_{ni} = \alpha_{i0} + \alpha_{i1} \mathbf{x}_{ni1} + \alpha_{i2} \mathbf{x}_{ni2} + \dots$$

$$\varepsilon_{ni} \sim \text{Gumbel}(\mathbf{0}, \mu)$$

LINEAR REGRESSION MODEL

Endogenous variable

Exogeneous variables

y_n (continuous)

 $\alpha_0, \alpha_1, \alpha_2, \dots$

- *X*_{*n*1},*X*_{*n*2},...
- Coefficients
- $\Box \quad \mathbf{y}_n = \mathbf{V}_n + \varepsilon_n$

• $V_n = \alpha_0 + \alpha_1 x_{n1} + \alpha_2 x_{n2} + \dots$ • $\varepsilon_n \sim \text{Normal}(0, \sigma)$

Core assumptions on random components

• ε_{ni} 's are Gumbel distributed

- Gumbel is also known as Extreme Value type I (EV1) distribution
- Variance is inversely related to scale parameter μ :

$$\operatorname{Var}(\varepsilon_{ni}) = \frac{\pi^2}{6\mu^2}$$

- ε_{ni} 's are independent and identically distributed (IID)
 - No correlations across alternatives and observations
 - Extent of noise across alternatives and observations is the same

Utility components

V_{ni}

- Deterministic part
- Represents explained choice behaviour, accounts for variables included in the model
- Relative size depends on importance of included variables

+

• Relative size is given by its standard deviation, $\sigma = \frac{\pi}{\mu\sqrt{6}}$

Large scale parameter μ

- Choice behaviour is more deterministic (i.e., attribute changes matter more)
- **Typically means that choices are forecast with higher reliability**
- But very large scale can also indicate issues with data or overfitting

Small scale parameter μ

- Choice behaviour is more random (high error variance)
- **Typically means that choices are forecast less well**
- Can indicate problems with data and/or model specification

Multinomial logit formula

• The probability that decision-maker *n* chooses alternative *i* among alternatives 1,..., *J* equals

$$P_{ni} = \Pr(y_{ni} = 1)$$

= $\Pr(U_{ni} > U_{nj}, \text{ for all } j \neq i)$
= $\Pr(V_{ni} + \varepsilon_{ni} > V_{nj} + \varepsilon_{nj}, \text{ for all } j \neq i)$
= $\Pr(\varepsilon_{nj} - \varepsilon_{ni} < V_{ni} - V_{nj}, \text{ for all } j \neq i)$
= $\frac{e^{\mu V_{ni}}}{\sum_{j=1}^{J} e^{\mu V_{nj}}} = \frac{\exp(\mu V_{ni})}{\sum_{j=1}^{J} \exp(\mu V_{nj})} = \frac{\exp(\mu V_{nj})}{\exp(\mu V_{nj}) + \dots + \exp(\mu V_{nj})}$

where $e \approx 2.71828$ is Euler's number

Scale parameter μ is not identifiable

- Scale parameter is data set specific but cannot be separately estimated
- Common normalisation:

 $\mu = 1$ such that $\varepsilon \sim \text{Gumbel}(0,1)$

Normalising scale does not mean that error variance is fixed

- Scale parameter is absorbed into coefficients of V
- In the multinomial logit formula, we can replace $\mu V_{ni} = \mu (\alpha_{i0} + \alpha_{i1} x_{ni1} + \alpha_{i2} x_{ni2} + ...)$ with

$$V_{ni} = \beta_{i0} + \beta_{i1} \mathbf{x}_{ni1} + \beta_{i2} \mathbf{x}_{ni2} + \dots, \qquad \beta_{ik} = \mu \alpha_{ik}$$

- Estimated coefficients β_{ik} jointly capture preferences (α_{ik}) and scale (μ)
- Scale should be considered when combining data sets (see Week 6)

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Only differences in utility matter

- Choice probabilities are not affected when the same number is added to all utilities
- The probability that decision-maker *n* chooses alternative *i* among alternatives 1,..., *J* equals

$$P_{ni} = \Pr(V_{ni} + \varepsilon_{ni} + a > V_{nj} + \varepsilon_{nj} + a, \text{ for all } j \neq i$$

$$= \Pr(V_{ni} + \varepsilon_{ni} > V_{nj} + \varepsilon_{nj}, \text{ for all } j \neq i)$$

$$= \Pr(\varepsilon_{nj} - \varepsilon_{ni} < V_{ni} - V_{nj}, \text{ for all } j \neq i)$$

$$= \frac{\exp(V_{ni})}{\sum_{j=1}^{J} \exp(V_{nj})} = \frac{1}{\sum_{j=1}^{J} \exp(V_{nj} - V_{ni})}$$

Only differences in utility matter – Example

- Assume the following utilities:
 - $V_{\text{Drug A}} = 2$ • $V_{\text{Drug B}} = 3$ $\Delta = 1$
- Probability that Drug A is chosen:

$$P_{\text{Drug A}} = \frac{\exp(2)}{\exp(2) + \exp(3)}$$
$$= \frac{\exp(0)}{\exp(0) + \exp(3 - 2)}$$
$$= \frac{1}{1 + \exp(1)}$$
$$= 0.27$$

• Assume the following utilities:

$$V_{\text{Drug A}} = 5$$

$$V_{\text{Drug B}} = 6$$
 $\Delta = 1$

• Probability that Drug A is chosen:

$$P_{\text{Drug A}} = \frac{\exp(5)}{\exp(5) + \exp(6)}$$
$$= \frac{\exp(0)}{\exp(0) + \exp(6 - 5)}$$
$$= \frac{1}{1 + \exp(1)}$$
$$= 0.27$$

Only differences in utility matter – Example

- Assume the following utilities:
 - $V_{\text{Drug A}} = 0$ $V_{\text{Drug B}} = 1$ $\Delta = 1$
- Probability that Drug A is chosen:

$$P_{\text{Drug A}} = \frac{\exp(0)}{\exp(0) + \exp(1)}$$
$$= 0.27$$

• Assume the following utilities:

•
$$V_{\text{Drug A}} = -4$$

• $V_{\text{Drug B}} = -3$ $\Delta = 1$

• Probability that Drug A is chosen:

$$P_{\text{Drug A}} = \frac{\exp(-4)}{\exp(-4) + \exp(-3)}$$

= $\frac{\exp(0)}{\exp(0) + \exp(-3 - -4)}$
= $\frac{1}{1 + \exp(1)}$
= 0.27

Independence of Irrelevant Alternatives (IIA)

- The relative probability of someone choosing between two options is independent of other alternatives in the choice set
- Assume the following utilities:

•
$$V_{\text{Drug B}} = 3$$

- Assume the following utilities:
 - $V_{\text{Drug A}} = 2$ • $V_{\text{Drug B}} = 3$ • $V_{\text{Drug C}} = 5$

• Relative probabilities of Drugs A and B:

• Relative probabilities of Drugs A and B:

$$\frac{\frac{P_{\text{Drug A}}}{P_{\text{Drug B}}}}{\frac{P_{\text{Drug B}}}{\exp(2)} = \frac{\frac{\exp(2)}{\exp(2) + \exp(3) + \exp(5)}}{\exp(2) + \exp(3) + \exp(5)} = 0.37$$

Is IIA realistic?

• Are relative choice probabilities always independent of the alternatives?

- IIA is a strong assumption and may not hold in practice
- Extensions of the MNL model exist to relax the IIA assumption

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Assumptions

• Assume the following utilities:

•
$$V_{\text{Drug A}} = 2$$

•
$$V_{\text{Drug B}} = 3$$

• What is the probability that a decision-maker chooses Drug A?

$$P_{\text{Drug A}} = \Pr\left(U_{\text{Drug A}} > U_{\text{Drug B}}\right)$$
$$= \Pr\left(2 + \varepsilon_{\text{Drug A}} > 3 + \varepsilon_{\text{Drug B}}\right)$$

• Assume that $\varepsilon_{\text{Drug A}}$, $\varepsilon_{\text{Drug B}} \sim \text{Gumbel(0,1)}$

Spreadsheet

□ See MNL probabilities.xlsx

P23			✓ I × ~	⁄ fx									``
	А	В	С	D	Е	F	G	Н	I	J	К	L	М
1											Analytical choi	ce probabilities	
2											27%	73%	
3													
4											Simulated choi	ce probabilities	
5			Scale (mu)	1							27%	73%	
6													
7				Drug A				Drug B			Drug A	Drug B	
8	n		V	eps	U=V+eps		V	eps	U=V+eps		choice	choice	
9	1		2	1.966	3.966		3	2.729	5.729		0	1	
10	2		2	0.183	2.183		3	2.837	5.837		0	1	
11	3		2	-0.429	1.571		3	0.272	3.272		0	1	
12	4		2	1.034	3.034		3	-1.304	1.696		1	0	
13	5		2	0.717	2.717		3	-1.290	1.710		1	0	
14	6		2	0.395	2.395		3	-0.497	2.503		0	1	
15	7		2	1.076	3.076		3	0.685	3.685		0	1	
16	8		2	1.206	3.206		3	0.979	3.979		0	1	
17	9		2	-0.003	1.997		3	0.767	3.767		0	1	
18	10		2	-1.157	0.843		3	-0.255	2.745		0	1	
10	11		2	0 070	1 1 1 1		2	1 000	4 000		0	1	

Deterministic part of utility

- $V_{Drug A} = 2$ $V_{Drug B} = 3$

P2	3	``	• : × ~	/ <i>f</i> x									~
	А	В	С	D	E	F	G	Н	I	J	К	L	M
1											Analytical choi	ce probabilities	
2											27%	73%	
3													
4											Simulated choi	ce probabilities	
5		9	Scale (mu)	1							27%	73%	
6													
7				Drug A				Drug B			Drug A	Drug B	
8	n		V	eps	U=V+eps	ſ	V	eps	U=V+eps		choice	choice	
9	1		2	1.966	3.966		3	2.729	5.729		0	1	
10	2		2	0.183	2.183		3	2.837	5.837		0	1	
11	3		2	-0.429	1.571		3	0.272	3.272		0	1	
12	4		2	1.034	3.034		3	-1.304	1.696		1	0	
13	5		2	0.717	2.717		3	-1.290	1.710		1	0	
14	6		2	0.395	2.395		3	-0.497	2.503		0	1	
15	7		2	1.076	3.076		3	0.685	3.685		0	1	
16	8		2	1.206	3.206		3	0.979	3.979		0	1	
17	9		2	-0.003	1.997		3	0.767	3.767		0	1	
18	10		2	-1.157	0.843		3	-0.255	2.745		0	1	
10	11			0 070	1 1 1 1		า	1 000	1 000		^	1	
•		Sheet	1 (+)										

Calculation of choice probabilities via multinomial logit formula

$$\Box P_{\text{Drug A}} = e^{\mu V_{\text{Drug A}}} / (e^{\mu V_{\text{Drug A}}} + e^{\mu V_{\text{Drug B}}})$$

 $\Box \quad P_{\text{Drug B}} = e^{\mu V_{\text{Drug B}}} / (e^{\mu V_{\text{Drug A}}} + e^{\mu V_{\text{Drug B}}})$

K2			~ : × ~	∕ <i>f</i> x =E	XP(D5*C9)/	(EXP(D5*C9)+EXF	P(D5*G9))					~
	А	В	С	D	E	F	G	н	I	J	К	L	M
1											Analytical choic	e probabilities	
2										(27%	73%	
3													
4											Simulated choic	ce probabilities	
5			Scale (mu)	1							27%	73%	
6													
7				Drug A				Drug B			Drug A	Drug B	
8	n		V	eps	U=V+eps		V	eps	U=V+eps		choice	choice	
9	1		2	1.966	3.966		3	2.729	5.729		0	1	
10	2		2	0.183	2.183		3	2.837	5.837		0	1	
11	3		2	-0.429	1.571		3	0.272	3.272		0	1	
12	4		2	1.034	3.034		3	-1.304	1.696		1	0	
13	5		2	0.717	2.717		3	-1.290	1.710		1	0	
14	6		2	0.395	2.395		3	-0.497	2.503		0	1	
15	7		2	1.076	3.076		3	0.685	3.685		0	1	
16	8		2	1.206	3.206		3	0.979	3.979		0	1	
17	9		2	-0.003	1.997		3	0.767	3.767		0	1	
18	10		2	-1.157	0.843		3	-0.255	2.745		0	1	
10	11			0 070	1 1 1 1		n	1 000	4 000		0	1	
•	Þ	Shee	t 1 (+)						:				

Calculation of choice probabilities via simulation

- $\Box \quad \varepsilon_{\text{Drug A}}, \varepsilon_{\text{Drug A}} \sim \text{Gumbel(0,1)}$
- Simulated draws from standard Gumbel distribution

D9			✓] : [× ·	√ <i>f</i> x =-L	N(-LN(RANI	D()))/	′\$D\$5						~
	А	В	С	D	Е	F	G	Н	1	J	К	L	M
1											Analytical choi	ce probabilities	
2											27%	73%	
3													
4											Simulated choi	ce probabilities	
5			Scale (mu)	1							27%	73%	
6													
7				Drug A				Drug B			Drug A	Drug B	
8	n		V	eps	U=V+eps		V	eps	U=V+eps		choice	choice	
9	1		2	1.966	3.966		3	2.729	5.729		0	1	
10	2		2	0.183	2.183		3	2.837	5.837		0	1	
11	3		2	-0.429	1.571		3	0.272	3.272		0	1	
12	4		2	1.034	3.034		3	-1.304	1.696		1	0	
13	5		2	0.717	2.717		3	-1.290	1.710		1	0	
14	6		2	0.395	2.395		3	-0.497	2.503		0	1	
15	7		2	1.076	3.076		3	0.685	3.685		0	1	
16	8		2	1.206	3.206		3	0.979	3.979		0	1	
17	9		2	-0.003	1.997		3	0.767	3.767		0	1	
18	10		2	-1.157	0.843		3	-0.255	2.745		0	1	
10	11	Shee	t1	0.070	1 1 2 1		Э	1 000	1 090		^	1	

 $\varepsilon_{\text{Drug A}} = \frac{-\ln(-\ln(u))}{\mu}$ $\varepsilon_{\text{Drug B}} = \frac{-\ln(-\ln(u))}{}$

where *u* is a random number between 0 and 1

Simulated random utilities

$$\Box \quad U_{\text{Drug A}} = V_{\text{Drug A}} + \varepsilon_{\text{Drug A}}$$

$$\Box \quad U_{\text{Drug B}} = V_{\text{Drug B}} + \varepsilon_{\text{Drug B}}$$

E9			~) : (× ~	f_x =0	C9+D9								~
	А	В	С	D	E	F	G	Н		J	К	L	Μ
1											Analytical choi	ce probabilities	
2											27%	73%	
3													
4											Simulated choi	ice probabilities	
5			Scale (mu)	1							27%	73%	
6													
7				Drug A				Drug B			Drug A	Drug B	
8	n		V	eps	U=V+eps		V	eps	U=V+eps		choice	choice	
9	1		2	1.966	3.966		3	2.729	5.729		0	1	
10	2		2	0.183	2.183		3	2.837	5.837		0	1	
11	3		2	-0.429	1.571		3	0.272	3.272		0	1	
12	4		2	1.034	3.034		3	-1.304	1.696		1	0	
13	5		2	0.717	2.717		3	-1.290	1.710		1	0	
14	6		2	0.395	2.395		3	-0.497	2.503		0	1	
15	7		2	1.076	3.076		3	0.685	3.685		0	1	
16	8		2	1.206	3.206		3	0.979	3.979		0	1	
17	9		2	-0.003	1.997		3	0.767	3.767		0	1	
18	10		2	-1.157	0.843		3	-0.255	2.745		0	1	
10	11			0 070	1 1 1 1		n	1 000	1 000		0	1	
•	▶ 5	Sheet	t1 (+)					· · · · · · · · · · · · · · · · · · ·					

Simulated choices

•
$$y_{\text{Drug A}} = 1$$
 (Drug A is chosen) if $U_{\text{Drug A}} > U_{\text{Drug B}}$ ($y_{\text{Drug A}} = 0$ otherwise)
• $y_{\text{Drug B}} = 1$ (Drug B is chosen) if $U_{\text{Drug B}} > U_{\text{Drug A}}$ ($y_{\text{Drug B}} = 0$ otherwise)

•
$$y_{\text{Drug B}} = 1$$
 (Drug B is chosen) if $U_{\text{Drug B}} > U_{\text{Drug A}}$ ($y_{\text{Drug B}} = 0$ otherw

К9			~ : (× ~	∕ <i>fx</i> =Ⅱ	F(E9>I9,1,0)								~
	А	В	С	D	E	F	G	н	I	J	К	L	M
1											Analytical choi	ce probabilities	
2											27%	73%	
3													
4											Simulated choi	ce probabilities	
5			Scale (mu)	1							27%	73%	
6													
7				Drug A				Drug B			Drug A	Drug B	
8	n		V	eps	U=V+eps		V	eps	U=V+eps	(choice	choice	
9	1		2	1.966	3.966		3	2.729	5.729		0	1	
10	2		2	0.183	2.183		3	2.837	5.837		0	1	
11	3		2	-0.429	1.571		3	0.272	3.272		0	1	
12	4		2	1.034	3.034		3	-1.304	1.696		1	0	
13	5		2	0.717	2.717		3	-1.290	1.710		1	0	
14	6		2	0.395	2.395		3	-0.497	2.503		0	1	
15	7		2	1.076	3.076		3	0.685	3.685		0	1	
16	8		2	1.206	3.206		3	0.979	3.979		0	1	
17	9		2	-0.003	1.997		3	0.767	3.767		0	1	
18	10		2	-1.157	0.843		3	-0.255	2.745		0	1	
10	11	Cha		0 070	1 1 1 1		2	1.000	1 000		0	1	
		Shee	t1 — (+)										

Simulated choice probabilities

- $\square P_{\text{Drug A}} = \text{average}(y_{\text{Drug A}})$
- $\square P_{\text{Drug B}} = \text{average}(y_{\text{Drug B}})$

К9			\checkmark : \times \checkmark	f_x =A	VERAGE(K9:	K100	8)						~
	A	В	С	D	E	F	G	Н	I	J	К	L	M
1											Analytical choi	ce probabilities	
2											27%	73%	
3													
4											Simulated choi	ce probabilities	
5			Scale (mu)	1						(27%	73%	
6													
7				Drug A				Drug B			Drug A	Drug B	
8	n		V	eps	U=V+eps		V	eps	U=V+eps		choice	choice	
9	1		2	1.966	3.966		3	2.729	5.729		0	1	
10	2		2	0.183	2.183		3	2.837	5.837		0	1	
11	3		2	-0.429	1.571		3	0.272	3.272		0	1	
12	4		2	1.034	3.034		3	-1.304	1.696		1	0	
13	5		2	0.717	2.717		3	-1.290	1.710		1	0	
14	6		2	0.395	2.395		3	-0.497	2.503		0	1	
15	7		2	1.076	3.076		3	0.685	3.685		0	1	
16	8		2	1.206	3.206		3	0.979	3.979		0	1	
17	9		2	-0.003	1.997		3	0.767	3.767		0	1	
18	10		2	-1.157	0.843		3	-0.255	2.745		0	1	
10	11	boo	*1	0 070	1 1 1 1		2	1 000	1 0 0 0		<u> </u>	1	
		onee	ti (+)										