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The basics

Multinomial logit model

 Abbreviated as the MNL model, also referred to as the conditional logit model
 Most basic random utility model
 Typically used as a starting point
 Many extensions exist
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 Endogenous variable           (continuous)

 Exogeneous variables
 Coefficients      

  

  
    

The basics

Econometric model

 Endogenous variable             (binary)

 Exogeneous variables
 Coefficients      
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Indices:    Observation n  –  Alternative i,j



Choice Modelling Academy © 6

The basics

Core assumptions on random components

     ’s are Gumbel distributed
 Gumbel is also known as Extreme Value type I (EV1) distribution
 Variance is inversely related to scale parameter     :  

     ’s are independent and identically distributed (IID)
 No correlations across alternatives and observations
 Extent of noise across alternatives and observations is the same
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The basics

Utility components

niU  niV  ni

 Deterministic part

 Represents explained choice 
behaviour, accounts for variables 
included in the model

 Relative size depends on 
importance of included variables

 Random part

 Represents unexplained choice 
behaviour, accounts for all 
variables not included in the model

 Relative size is given by                   
its standard deviation,      
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The basics

Large scale parameter

 Choice behaviour is more deterministic (i.e., attribute changes matter more)
 Typically means that choices are forecast with higher reliability

 But very large scale can also indicate issues with data or overfitting
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The basics

Small scale parameter

 Choice behaviour is more random (high error variance)
 Typically means that choices are forecast less well

 Can indicate problems with data and/or model specification
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The basics

Multinomial logit formula

 The probability that decision-maker n chooses alternative i among alternatives              equals
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The basics

Scale parameter      is not identifiable

 Scale parameter is data set specific but cannot be separately estimated
 Common normalisation:



1 Gumbel(0,1)such that
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The basics

Normalising scale does not mean that error variance is fixed

 Scale parameter is absorbed into coefficients of V
 In the multinomial logit formula, we can replace                                                             

with

 Estimated coefficients         jointly capture preferences (     ) and scale (   )
 Scale should be considered when combining data sets (see Week 6)
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Since scale parameter     is data set 
specific, estimated coefficients        are 

not comparable across studies
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Model properties

Only differences in utility matter

 Choice probabilities are not affected when the same number is added to all utilities

 The probability that decision-maker n chooses alternative i among alternatives              equals
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Model properties

Only differences in utility matter – Example

 Assume the following utilities:
  
  

 Probability that Drug A is chosen:

Drug A 2V 

Drug B 3V 

Drug A
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 Assume the following utilities:
  
  

 Probability that Drug A is chosen:

Drug A 5V 

Drug B 6V 
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Model properties

Only differences in utility matter – Example

 Assume the following utilities:
  
  

 Probability that Drug A is chosen:

Drug A 0V 

Drug B 1V 

Drug A
exp(0)

exp(0) exp(1)
0.27

P 




 Assume the following utilities:
  
  

 Probability that Drug A is chosen:

Drug A 4V 

Drug B 3V 

Drug A
exp( 4)

exp( 4) exp( 3)
exp(0)

exp(0) exp( 3 4)
1

1 exp(1)
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Model properties

Independence of Irrelevant Alternatives (IIA)

 Assume the following utilities:
  
  

 Relative probabilities of Drugs A and B:

 Assume the following utilities:
  
  
  

 Relative probabilities of Drugs A and B:

Drug A 2V 

Drug B 3V 

Drug A

Drug B

exp(2)
exp(2) exp(3) 0.37exp(3)
exp(2) exp(3)

P
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 The relative probability of someone choosing between two options is independent of other 
alternatives in the choice set
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 Are relative choice probabilities always independent of the alternatives?

 IIA is a strong assumption and may not hold in practice
 Extensions of the MNL model exist to relax the IIA assumption

Model properties

Is IIA realistic?



Experimental 
design

Data collection     
& processing

Model specification 
& estimation

Interpretation        
& application

Key concepts        
& study plan

Numerical example



Choice Modelling Academy © 20

Numerical example

Assumptions

 Assume the following utilities:
  
  

 What is the probability that a decision-maker chooses Drug A?

 

 Assume that

Drug A 2V 

Drug B 3V 

 
 

Drug A Drug A Drug B

Drug A Drug B

Pr

Pr 2 3

P U U

 

 

   

Drug A Drug B, Gumbel(0,1) 
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Numerical example

Spreadsheet

 See MNL probabilities.xlsx
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Numerical example

Deterministic part of utility

                  
   

Drug A 2V 

Drug B 3V 
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Numerical example

Calculation of choice probabilities via multinomial logit formula

  
  

Drug A Drug A Drug B
Drug A / ( )V V VP e e e   

Drug B Drug A Drug B
Drug B / ( )V V VP e e e   
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Numerical example

Calculation of choice probabilities via simulation

  
 Simulated draws from standard Gumbel distribution

Drug A Drug A, Gumbel(0,1) 

 
Drug A

ln ln( )u



 



where u is a 
random number 
between 0 and 1

 
Drug B

ln ln( )u
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Numerical example

Simulated random utilities

  
  

Drug A Drug A Drug AU V  

Drug B Drug B Drug BU V  



Choice Modelling Academy © 26

Numerical example

Simulated choices

                   (Drug A is chosen) if                                  (                   otherwise)
                   (Drug B is chosen) if                                  (                   otherwise)

Drug A Drug BU U

Drug B Drug AU U
Drug A 1y 

Drug B 1y 
Drug A 0y 

Drug B 0y 
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Numerical example

Simulated choice probabilities

  
   

Drug A Drug Aaverage( )P y

Drug B Drug Baverage( )P y
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