A guide to: model building, specification, estimation, and refinement

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

A guide to: model building

Steps in model building

- 1. Zero configuration model
- 2. Functional form
- 3. Investigate error structure assumptions
- 4. Study the data to prepare for model refinement
- 5. Test for differences across segments
- 6. Deterministic heterogeneity
- 7. Random heterogeneity
- 8. Attitudes and other soft factors

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Motivation

- □ Always start with simple model
 - independent of topic, type of data, etc
- Aims:
 - determine that data works
 - create base model for later comparisons

General base specification

- □ Three components:
 - Full set of alternative specific constants (J-1)
 - whether working with labelled or unlabelled choices
 - Dummy coded categorical variables
 - Linear specification for continuous variables
- No interactions, heterogeneity or non-linearity
 - and definitely no mixed logit!

Diagnostics for base model

Model fit

- Compare model to two other 'naive' models
- Purely random model, or LL(0)
 - is our model explaining anything?
- Model with constants only, or LL(C)
 - are the explanatory variables explaining anything?
- Individual parameters
 - do all parameters have the expected sign?
 - can we reject null hypothesis that parameters are zero $(H_0 : \beta_k = 0)$?
- □ Is implied behaviour realistic?
 - Relative sensitivity to different attributes
 - Elasticities and/or marginal effects

Iterative model building

- Gradually improve model specification
- Do this step by step, rather than immediately trying complex specification
- □ Specification decisions are based on:
 - model fit comparisons against current base model
 - reasonableness of results
 - comparison of MRS outputs and elasticities
- □ This point applies to all steps in this session

Step 2: Functional form

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Step 2: Functional form

Non-linear vs linear for continuous variables

- □ If number of levels is limited:
 - estimate model where a parameter is estimated for each level via dummy coding
 - then visually inspect linearity
- □ If number of levels is large:
 - contrast linear vs log vs box-cox vs polynomial
- Compare model fit to base model using statistical tests
- □ Especially important with RP data or pivoted SP data
 - often big gain in fit
 - and even changes in signs for some parameters

Step 2: Functional form

Levels for categorical variables

- □ Might see that some levels are not different from each other
- □ Would likely not collapse levels at this stage but keep in mind for later steps

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Nested Logit

- Choice between some alternatives is more deterministic than between others
- □ Allows for departure from *IIA* assumptions
- □ Relevant not just with labelled choice situations, but also with opt-out/status quo

Multiplicative errors

 $\hfill\square$ Relevant if there is scope for heteroskedasticity across observations

- especially with data that mixes observations with big differences in explanatory variables
- e.g. short journeys for some, long for others

Heteroskedasticity across alternatives

- \square Is assumption about the amount of noise being the same across alternatives valid?
- RP data example:
 - might have more error for some alternatives as analyst does not capture all attributes
- □ SP data example:
 - might have more uncertainty for SQ if the attributes are lists as "as now"

Step 4: Study the data to prepare for model refinement

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Step 4: Study the data for model refinement

Possible segmentations

- Sample coming from different sources
 - e.g. online and CAPI, RP and SP
- Sample coming from different locations
 - e.g. multi-country
- $\hfill\square$ Core sample segments where differences are of interest for policy
 - e.g. business *vs* leisure

Step 4: Study the data for model refinement

Possible individuals that are of concern

- Identify non-traders, lexicographic people, speeders etc
- But do not just remove them from the data
 - bad practice that is pretty common

Step 4: Study the data for model refinement

Insights for possible interactions

- □ Who chooses what in what settings?
- Can do this for socio-demographics, scenario variables, etc

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Separate models

Estimate separate models for different segments

- e.g. online vs CAPI, business vs leisure
- Insights:
 - statistical tests for model fit differences against generic model
 - compare results across segments to see if differences are in only some of the parameters
 - compare MRS outputs and elasticities

Scale differences only

- Estimate joint model but allow for scale differences
- Compare model to generic model
 - if test rejects generic model, could be evidence of scale heterogeneity
- $\hfill\square$ But also compare model with scale differences to having separate models
 - if separate models reject model with scale difference only, then there are also differences in individual sensitivities

Outcomes

 $\hfill\square$ Helps us form decisions on what to do about individual segments

- keep separate models or joint model with interactions for some attributes only?
- or a model with scale differences only?
- □ Can tell us what do about "suspicious individuals"
 - is their data really worse and should they really be removed?

Step 6: Deterministic heterogeneity

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Step 6: Deterministic heterogeneity

Aims and outline

- □ Likely to involve the most analyst work
- □ Aim is to link heterogeneity to observed characteristics of individual and/or scenario
- Gradually build up model complexity!

Step 6: Deterministic heterogeneity

How do we do this?

Many possibilities

- Separate parameters by group (e.g. male vs female)
- Interactions with continuous covariates (e.g. income elasticity for cost sensitivity)
- □ Try to use an "intelligent approach"
 - Don't just throw 200 parameters at the model
 - Study the data and also use prior insights into likely heterogeneity

Step 6: Deterministic heterogeneity

Be mindful of confounding

- □ Heterogeneity may be in unexpected places
- Omitted heterogeneity will affect model quality and potentially bias other results
 - e.g. not accounting for heterogeneity in cost sensitivity may affect findings in terms of heterogeneity in other parameters

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Aims and outline

- □ Likely the step giving biggest gains in fit
- But often less insightful than deterministic heterogeneity
- Computationally demanding
- □ Easy to make mistakes
- The more we account for deterministic heterogeneity, the less scope remains for random heterogeneity

Decisions to make

- □ Mixed logit or latent class
- □ Which parameters are random?
- □ How are the models estimated?

Model building

- Same idea as with other steps
- □ Compare model to earlier models
- Compare fit and compare MRS
- Potentially conduct posterior analysis to get additional insights

Step 8: Attitudes and other soft factors

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Step 8: Attitudes and other soft factors

Aims and outline

□ Much interest in attitudes

- Clear that they can influence choices
- □ Models can be specified to capture their role

Step 8: Attitudes and other soft factors

A word of warning

- □ Much more demanding type of model
- Potentially insights are quite limited
- □ Should not expect a model with attitudes to explain choices better

Generic points not covered

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Generic points not covered

Additional specification decisions

- Decision rules
 - Have focused on random utility
 - Many of the same points apply with other decision rules too
- Information processing
 - Large body of work in early 2000s looking at information processing
 - Can provide insights into how people use the information in choice situations
- WTP space
 - Relevant approach with mixture models
 - Essentially no reason to use without random heterogeneity

Generic points not covered

Estimation

Estimation method

- our focus is on classical estimation using maximum likelihood
- many people also use Bayesian techniques
- Software
 - many options are available
 - all with strengths and weaknesses