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Maximum likelihood estimation
Estimation of model parameters

q Observe explanatory data, say x
‚ general notation, so x can also include characteristics of decision-maker (z) and choice
situation (w)

q Observe choices, say Y
‚ Ynt is the chosen alternative for person n in choice situation t

q Specify utility functions and select model type
q Find parameter values β that best explain the choices

Overview reference MMNL: Train, K.A. (2009), ‘Discrete Choice Methods with Simulation’, ch. 8, Cambridge
University Press, Cambridge, MA.
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Maximum likelihood estimation
Likelihood and log-likelihood

q N people, Tn observations for n
q Ynt chosen by n in situation t

q yjnt “

#

1 if Ynt “ j

0 if Ynt ‰ j

q β groups together all model parameters
q Likelihood given by L pβq

q Even with modest N and J, L pβq Ñ 0
q Instead work with log-likelihood LL pβq

L pβq “
N
ź

n“1

Tn
ź

t“1

J
ź

j“1

pPjnt pβ, xntqq
yjnt

LL pβq “ log pL pβqq

“

N
ÿ

n“1

Tn
ÿ

t“1

J
ÿ

j“1

yjnt ¨ log pPjnt pβ, xntqq

pβ “ arg max
β

L pβq

“ arg max
β

LL pβq
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Maximum likelihood estimation
Implementation

Theoretical notation
q Sum over probabilities of all alternatives, but only one has a non-zero yjnt

LL pβq “
řN

n“1
řTn

t“1
řJ

j“1 yjnt ¨ log pPjnt pβ, xntqq

Implementation
q Only need probability of chosen alternative for each observation, i.e. Ynt

LL pβq “
řN

n“1
řTn

t“1 log pPYnt pβ, xntqq
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Maximum likelihood estimation
Global optimum

q LL pβq for linear in parameters
MNL is globally concave

q If a solution exists, it is unique
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Maximum likelihood estimation
Local optima

q In more advanced models or with
utility specifications that are not
linear in parameters, no longer
have a single global optimum

q Numerous local optima
q Starting in a bad location may

get us trapped in one of these
local optima

q Closed form choice probabilities
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Maximum likelihood estimation
Outputs from model estimation

q Model estimation produces three key outputs
‚ Model fit
‚ Parameter estimates
‚ Covariance matrix

q We now look at the interpretation of these outputs
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Model fit
Log-likelihoood at convergence

q Likelihood L pβq shows how likely choices in our data are
‚ conditional on chosen model and at parameter values β

q Classical estimation maximises log-likelihood
‚ Log-likelihood LL pβq “ log rL pβqs

q At convergence, obtain parameters values β̂

q LL
´

β̂
¯

used extensively during specification search
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Model fit
Obtain metrics other than just LLpβ̂q

q LL
´

β̂
¯

: LL at convergence (MLE)

q LL pβ0q: LL at starting values
q LL pβESq: LL at equal shares

‚ random model, Pj “
1
J @j

‚ often written as LL p0q
‚ often same as LL pβ0q

q LL pβOSq: LL at observed shares
‚ replicates aggregate shares in the data
‚ helps understand how much other
parameters contribute to
understanding choices especially in
labelled settings

Different LL measures
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Model fit
Outlier detection

q LL
´

β̂ | x ,Y
¯

gives LL for entire sample

q After estimation, can compute Pnt for each observed choice for each person
q And average across choices, say P̄nt “

1
Tn

řTn
t“1 Pnt

q After estimation, expect P̄nt ą
1
Jn

for most people, where Jn is number of alternatives
q But clearly not for all people (that’s why we have an error term)
q Outlier detection looks for people where Pn is very low

‚ no specific guidance of what very low means
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Model fit
Using information from outlier detection

q Bad idea to remove outliers from model
q They tell us that our model is struggling to explain their choices
q Use this to improve the model
q Possible findings

‚ Coding or measurement errors in the data
‚ Look for signs of data errors
‚ Correct or remove the observation

‚ Model misspecification
‚ Seek clues of missing variables from the observation
‚ Keep the observation and improve the model
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Model fit
Model performance

q In regression, evaluate performance using e.g. R2

q In choice modelling, focus is more on relative performance
‚ how well does one model on a dataset do compared to another

q Or look at out-of-sample validation
‚ compare fit on validation data to estimation data (often 20%´ 80% split)
‚ checks for overfitting
‚ limited insight if validation data from same sample
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Model fit
Hit rate (and why not to use it)

Assigns choice to highest Pj

Model 1 Model 2
Person Choice PA PB PA PB

1 A 0.8 0.2 0.55 0.45
2 A 0.75 0.25 0.53 0.47
3 B 0.3 0.7 0.48 0.52
4 A 0.85 0.15 0.54 0.46
5 B 0.25 0.75 0.49 0.51
6 B 0.2 0.8 0.49 0.51
7 B 0.6 0.4 0.44 0.56
8 A 0.45 0.55 0.54 0.46
9 A 0.85 0.15 0.51 0.49
10 A 0.35 0.65 0.55 0.45

LL -4.47 -6.32
Av prob choice 0.67 0.53

Hit rate 0.7 1

Why is this a bad idea?
“This statistic incorporates a notion that is
opposed to the meaning of probabilities and
the purpose of specifying choice probabilities.
The statistic is based on the idea that the

decision maker is predicted by the researcher
to choose the alternative for which the model

gives the highest probability.”
(Kenneth Train, Discrete Choice Methods

with Simulation, Cambridge University Press)
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Parameter estimates
Model outputs

q Model estimation returns maximum likelihood estimates, or MLE, given by β̂
q These are the estimates that give us the log-likelihood at convergence
q Parameter types
1. parameters capturing impact of changes in an attribute on utility
2. parameters relating to model structure (e.g. nesting parameters)
3. parameters capturing socio-demographic interactions

q Our focus for now is on the first of these
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Parameter estimates
Illustrative example

q Can get initial insights from signs
‚ Each £ in cost loses us 0.005 units in utility
‚ Each GB in memory gains us 0.004 units in utility
‚ Moving from 3G to 4G and 5G increases utility
‚ Highest utility for Apple ahead of Samsung & Huawei

q But what about the size of the estimates?

Mobile phone choice

Parameters Estimate (β̂k)
βcost,£ -0.005

βmemory ,GB 0.004
β3G 0
β4G 0.5
β5G 0.75

βHuawei 0
βSamsung 1
βApple 1.75
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Parameter estimates
Scale matters

q Different studies have different levels of noise
q Greater noise means smaller β, and vice versa
q We thus cannot say that cost matters more in our

study than in a study where βcost,£ “ ´0.002

Mobile phone choice

Parameters Estimate (β̂k)
βcost,£ -0.005

βmemory ,GB 0.004
β3G 0
β4G 0.5
β5G 0.75

βHuawei 0
βSamsung 1
βApple 1.75
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Parameter estimates
Units, levels and ranges

q Cannot say cost is more important than memory
‚ with continuous attributes, units matter

q Cannot say that Apple is better than 5G
‚ with categorical attributes, levels and ranges matter
‚ remember that only differences in utility matter, in
this case differences against the base

q Also incorrect to say that brand is more important
than download speed
‚ can at best say that with the specific levels used
here, brand can influence choice more than
download speed

Mobile phone choice

Parameters Estimate (β̂k)
βcost,£ -0.005

βmemory ,GB 0.004
β3G 0
β4G 0.5
β5G 0.75

βHuawei 0
βSamsung 1
βApple 1.75
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Parameter estimates
Marginal rate of substitution (MRS)

q Absolute values of parameters have no meaning
q Can only look at relative impacts on utility of changes in attributes

‚ most common example is willingness-to-pay (WTP)
‚ e.g. how much does one unit in time matter compared to one unit in cost?

q In the simplest case, this is the ratio of two coefficients
q The computation of these measures depends on the type of attribute, the utility

specification and the model type
q This will be discussed in detail later in the course
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Parameter estimates
Continuous attributes with a linear specification

q Vj “
řK

k“1 βkxj ,k
q Impact on utility given by partial derivatives

‚
BVj

Bxj,l
“ βl is impact of a one unit change in attribute xj,l

q MRS: relative impact on utility of unit changes in two attributes, say xj ,l and xj ,m

‚ MRSxj,l ,xj,m “

BVj
Bxj,l
BVj

Bxj,m

“
βl

βm
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Parameter estimates
Willingness-to-pay (WTP)

q MRS where the denominator is a monetary attribute
q Let us say xj ,c is the cost attribute for alternative j

‚ WTPxj,l ,xj,c “

BVj
Bxj,l
BVj

Bxj,c

“
βl

βc

q Presents monetary value of changes in attribute l

q Can relate to both willingness-to-pay (WTP) for an improvement in an attribute, or
willingness-to-accept (WTA) a worse value in return for lower cost
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Parameter estimates
Categorical attributes

q Can only look at changes in utility between levels, and compare this to impacts of
other attributes

q Let us say xj ,q and xj ,r are categorical variables
‚ Relative impact: βq,3´βq,2

βr,2´βr,1
‚ how much does a change from the second to the third level of attribute q matter
compared to a change from the first to the second level of attribute r

q Can of course combine with continuous attributes too
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Parameter estimates
Results for our example
q

βmemory,GB

βcost,£
“ ´0.8

‚ increasing memory by 1GB has the same
impact on utility as decreasing cost by £0.8

‚ can interpret as a WTP of £0.8 per GB

q
βApple´βSamsung

β5G´β3G
“ 1

‚ Going from Samsung to Apple is as valuable as
going from 3G to 5G

q
βApple´βHuawei

βcost,£
“ ´£350

‚ Going from Huawei to Apple is the same as
reducing cost by £350

‚ WTP of £350 for going from Huawei to Apple
(or reverse need for compensation)

Parameters Estimate (β̂k)
βcost,£ -0.005

βmemory ,GB 0.004
β3G 0
β4G 0.5
β5G 0.75

βHuawei 0
βSamsung 1
βApple 1.75
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Parameter estimates
Discussion

q MRS calculations are the key output for interpretation of random utility models
q Used universally across disciplines (unlike some other metrics)
q Computation here has looked only at linear-in-attributes specifications

‚ non-linearity adds complexity
‚ as does heterogeneity

q Meaning of MRS is different for non-RUM models as value functions (e.g. regret) are
context dependent
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Covariance matrix
Covariance matrix and standard errors

q Estimation gives us estimates (β̂) and asymptotic
variance-covariance matrix Ω

q Our key interest is in standard errors (σ)
‚ given by square root of diagonal elements of
covariance matrix

‚ expression of precision of parameter estimates
‚ a smaller standard error means we can be surer
about the estimated value

q Can also calculate standard errors for functions of
parameters (e.g. MRS) using Delta method

q We use standard errors for asymptotic confidence
intervals and for statistical tests

Covariance matrix and
standard errors

Ω “ I pβq´1

I pβq “ ´E pH pβqq

H pβq “

ˆ

B2LL pβq

BβBβ1

˙

σβk “
a

Ωk,k
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Covariance matrix
Standard errors and sample size

q βk is one parameter in model
q True value given by β˚k
q Maximum likelihood estimate (MLE): pβk
q Incomplete data leads to sampling error
q Asymptotic normality:

?
N
´

pβ ´ β˚
¯

Ñ N p0,Ωq
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Covariance matrix
Confidence intervals

q With new data, estimates would change
q Often report 95% confidence intervals

‚ 95% chance that the true value for a
parameter lies in that range

‚ with smaller standard errors, CIs will be
narrower

q Calculation of CIs uses estimated value,
standard error, and critical value from a
Np0, 1q distribution

‚ e.g. for 95%, we use pβk ˘ 1.96σβk

CI α α
2 z

α
2

99% 0.01 0.005 2.57
95% 0.05 0.025 1.96
90% 0.1 0.05 1.64
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Covariance matrix
Statistical tests: t-ratios
q Used (typically) to test whether

parameter is different from zero
(H0 : βk “ 0)

q Test statistic: t
pβk
“

pβk´0
σβk

q We compare the test statistic to a critical
value and see if it exceeds it
‚ e.g. 1.96 for a 95% two-sided test, or 1.64
for a one-sided test

confidence level 1 sided critical value 2 sided critical value
99% 2.33 2.58
95% 1.64 1.96
90% 1.28 1.64
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Covariance matrix
Statistical tests: t-ratios and p-values

q Can compute p-value (probability that
our result was obtained by chance if H0 is
true)

q Should always report either standard
error or t-ratio alongside p-value

q And state whether one-sided or two-sided

t-ratio p-value (1 sided) p-value (2 sided)
2.58 0.005 0.01
2.33 0.01 0.02
1.96 0.025 0.05
1.64 0.05 0.1
1.28 0.1 0.2
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Covariance matrix
One-sided or two-sided tests

q pβcost “ ´0.045
q σβcost “ 0.025
q t

pβcost
“ ´1.8

q Typical critical value: 1.96
q Using 1.96 makes sense in absence of sign

assumptions
q But often we know the sign
q Consider using one-sided tests

‚ otherwise we would say that very negative
values are also unacceptable
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Covariance matrix
Recap: classical standard errors

q Classical covariance matrix Ω is a
conservative estimate of sampling error

q Relies on number of assumptions
‚ model is correct
‚ no unmodelled correlation across choices

Classical covariance matrix

Ω “ I pβq´1

I pβq “ ´E pH pβqq

H pβq “

ˆ

B2LL pβq

BβBβ1

˙
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Covariance matrix
Robust covariance matrix

q Given by sandwich estimator
involving the BHHH matrix (B)

q Robust se tend to be larger
q Using LL at person level in BHHH

gives different robust standard errors
from working at observation level
‚ T observations each from N people is
not the same as 1 observation each
from NT people

Robust covariance matrix

Ωrobust “ ΩB Ω

Bjk “

N
ÿ

n

BLLn pβq

Bβj

BLLn pβq

Bβk
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Covariance matrix
Bootstrapping uses fewest assumptions

q Works by repeated sampling
q Approach with least

assumptions
q But computationally most

demanding

Bootstrapped covariance matrix
1. Draw S versions of data with replacement
2. S sets of β: βs “ 〈β1,s , . . . , βK ,s〉 , s “ 1, . . . ,S

3.
řS

s“1 βk,s
S Ñ pβk “ with large S

4. Ωbootstrap “ var pβq
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Covariance matrix
Confidence interval comparison

q Asymptotic CI for classical and
robust
‚ symmetrical by definition
‚ wider with robust se

q With bootstrapping, can look at
empirical CI
‚ No longer necessarily symmetrical
‚ lower limit in this case 5.1% further
from mean than upper limit
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