

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Overview

- Different models might result in different conclusions
- An infinite number of possible models exists
- Need approach to select a good model

Important

□ It only makes sense to compare models estimated on the same data set

Typical question

• Which model fits the data best?

Two types of model comparisons

Models are nested if one is a restricted version of the other (e.g., by setting one or more parameters to zero)

Two types of model comparisons

Comparing nested models

Comparing non-nested models

$$1 \quad V_j = \beta_{time} * TT_j + \beta_{cost} * TC_j$$

2
$$V_j = \beta_{time} * TT_j + \beta_{log-cost} * \log(TC_j)$$

Model 1 is <u>not</u> a restricted version of Model 2

Should we just look at log-likelihood value?

• Which model would you use?

	Model specification	Loglikelihood value
1	$V_j = \beta_{time} * TT_j + \beta_{cost} * TC_j$	LL = -538.3
2	$V_j = \beta_{time} * TT_j + \beta_{cost} * TC_j + \beta_{time*seating} * TT_j * Seat_j$	LL = -534.9
3	$\begin{split} V_{j} &= \beta_{time} * TT_{j} + \beta_{cost} * TC_{j} + \beta_{time*seating} * TT_{j} * Seat_{j} \\ &+ \beta_{cost*age} * TC_{j} * age + \beta_{seat}Seat_{j} + \beta_{time*age}TT_{j} * age \end{split}$	LL = -533.5

Assessing model fit

Assessment methods

- Likelihood ratio (LR) test
- Akaike Information Criterion (AIC)
- Bayesian Information Criterion (BIC)
- Adjusted ρ^2
- Ben-Akiva and Swait test

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Statistical significance test

Compare nested models

- Restricted model with K parameters
- General model with K+p parameters
- Hypothesis testing
 - H₀: The p additional parameters do NOT improve the model
 - H₁: The p additional parameters do improve the model

•
$$H_0$$
 is rejected if $-2log\left(\frac{L_{restricted}}{L_{general}}\right) = -2(LL_{restricted} - LL_{general}) > \chi^2_{p,1-\alpha}$

The χ_p^2 distribution

$\chi^2_{p,1-\alpha}$	1-α				
V	0.90	0.95	0.975	0.99	0.999
1	2.706	3.841	5.024	6.635	10.828
2	4.605	5.991	7.378	9.210	13.816
3	6.251	7.815	9.348	11.345	16.266
4	7.779	9.488	11.143	13.277	18.467
5	9.236	11.070	12.833	15.086	20.515
6	10.645	12.592	14.449	16.812	22.458
7	12.017	14.067	16.013	18.475	24.322
8	13.362	15.507	17.535	20.090	26.125
9	14.684	16.919	19.023	21.666	27.877
10	15.987	18.307	20.483	23.209	29.588
11	17.275	19.675	21.920	24.725	31.264
12	18.549	21.026	23.337	26.217	32.91

Example 1

- Assume a = 0.05
- Test statistic: $-2(LL_{restricted} LL_{general}) = -2(-538.3 (-534.9)) = 6.8$
- **Critical value:** $\chi^2_{1,0.95}$ =3.841
- Model 2 has a significantly better model fit since 6.8 > 3.841

Model specificationLoglikelihood value1
$$V_j = \beta_{time} * TT_j + \beta_{cost} * TC_j$$
LL = -538.32 $V_j = \beta_{time} * TT_j + \beta_{cost} * TC_j + \beta_{time*seating} * TT_j * Seat_j$ LL = -534.9

Example 2

- Assume a = 0.05
- Test statistic: $-2(LL_{restricted} LL_{general}) = -2(-534.9 (-533.5)) = 2.8$
- Critical value: $\chi^2_{3,0.95}$ =7.815
- □ Model 3 does not have a significantly better model fit since 2.8 < 7.815

Model specificationLoglikelihood valueV_j =
$$\beta_{time} * TT_j + \beta_{cost} * TC_j + \beta_{time*seating} * TT_j * Seat_j$$
LL = -534.9V_j = $\beta_{time} * TT_j + \beta_{cost} * TC_j + \beta_{time*seating} * TT_j * Seat_j$ LL = -533.5+ $\beta_{cost*age} * TC_j * age + \beta_{seat}Seat_j + \beta_{time*age}TT_j * age$ LL = -533.5

AIC and BIC

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

AIC and BIC

Indicators not based on statistical significance test

- Compare any two models (nested or non-nested)
- Information criteria
 - Akaike Information Criterion (AIC) = 2 * K 2 * LL
 - Bayesian Information Criterion (BIC) = log(N) * K 2 * LL

- LL = loglikelihood value
- K = number of model parameters
- N = number of choice observations

- A model has a better model fit if it has a smaller AIC or BIC
- □ If you prefer a more parsimonious model (with less parameters) then use BIC

AIC and BIC

Example

Model 1

- AIC = 2 * K 2 * LL = 2 * 2 2 * (-538.3) = 1080.6
- $BIC = \log(N) * K 2 * LL = 2*\log(1200) 2*(-538.3) = 1090.78$ Model 1 has better fit according to BIC

Model 2

- AIC = 2 * K 2 * LL = 2 * 3 2 * (-534.9) = 1075.8 Model 2 has better fit according to AIC
- $BIC = \log(N) * K 2 * LL = 3 \log(1200) 2 (-534.9) = 1091.07$

Model specificationLoglikelihood valueObservations
$$V_j = \beta_{time} * TT_j + \beta_{cost} * TC_j$$
LL = -538.3N = 1200 $V_i = \beta_{time} * TT_i + \beta_{cost} * TC_i + \beta_{time*seating} * TT_i * Seat_i$ LL = -534.9N = 1200

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Indicators not based on statistical significance test

- Compare any two models (nested or non-nested)
- Criterion resembles R² in linear regression
 - $\bar{\rho}^2 = \frac{LL K}{LL(0)}$ $LL(0) = N*\log(1/J)$

LL = loglikelihood value

- K = number of model parameters
- N = number of choice observations
- J = number of alternatives

- A model has a better model fit if it has a larger adjusted $\bar{\rho}^2$
- Model selection is the same as with AIC

Example

Model 1

$$\bar{\rho}^2 = 1 - \frac{LL - K}{LL(0)} = \frac{-538.3 - 2}{1200 * \log(0.5)} = 0.35$$

Model 2

•
$$\bar{\rho}^2 = 1 - \frac{LL - K}{LL(0)} = \frac{-534.9 - 3}{1200 * \log(0.5)} = 0.353$$

Model 2 has better fit

Model specificationLoglikelihood valueObservations
$$V_j = \beta_{time} * TT_j + \beta_{cost} * TC_j$$
LL = -538.3 $N = 1200$ $V_j = \beta_{time} * TT_j + \beta_{cost} * TC_j + \beta_{time*seating} * TT_j * Seat_j$ LL = -534.9 $N = 1200$

Ben-Akiva and Swait (1986) test

- Tests for statistical significance of difference in $\bar{\rho}^2$
- Mainly for non-nested models (for nested models the Likelihood Ratio test is preferred)

Model comparison guidance

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Model comparison guidance

So which method should you use?

Comparing nested models

Likelihood Ratio test

Comparing non-nested models

- □ AIC and Ben-Akiva & Swait test give similar outcome
- **BIC** if a more parsimonious model is preferred (with fewer parameters)