Heterogeneity - an overview

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Heterogeneity - an overview

What is heterogeneity?

- Heterogeneity is another word for variability
- □ In a choice modelling context, this relates to:
 - differences across people
 - differences across choices for same person
 - e.g. different settings, different points in time
- □ Main focus is in differences in sensitivities (e.g. cost sensitivity)
- □ Heterogeneity in preferences can lead to differences in choice outcomes

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

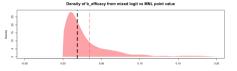
Mathematical fit

- Incorporating heterogeneity in our models increases flexibility
- □ Ability to better explain choices
- Models with heterogeneity invariably obtain better model fit

Behavioural insights

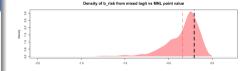
- Provides insights into why some people make specific choices
 - e.g. underlying health conditions reduce likelihood of certain treatment options
- □ Can ensure more robust appraisal of cost vs benefits
 - e.g. if we know how relative importance of waiting time and risk varies across patients
- □ Can help shape a more efficient provision of services/goods
 - e.g. make a variety of services available, covering widest range of preferences
- Can help shape strategies to nudge behaviour
 - e.g. identify drivers of vaccine hesitancy

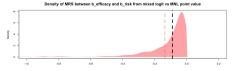
What if I'm only interested in the mean?



Not all point values are equal!

Aggregate preferences from a model allowing for heterogeneity may be different (and less biased) than those from a model assuming homogeneity





Why do we get bias?

 $\hfill\square$ Not accounting for heterogeneity increases amount of noise in model

$$U_{jnt} = \sum_{k=1}^{K} \beta_{n,k} x_{jnt,k} + \varepsilon_{jnt}$$
$$= \sum_{k=1}^{K} \beta_{k} x_{jnt,k} + \varepsilon_{jnt} + \sum_{k=1}^{K} (\beta_{n,k} - \beta_{k}) x_{jnt,k}$$

- $\hfill\square$ Unobserved part of utility now correlated with deterministic part
 - \rightarrow breaks core assumption of additive in errors random utility
 - \rightarrow potential bias
- □ Even if not *interested* in heterogeneity, will have less bias by accounting for it

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Deterministic heterogeneity: link to observed information

Option 1: discrete segmentations, with separate models

- e.g. male *vs* female, business *vs* leisure
- same as a joint model with segment-specific parameters
- assumes that differences exist in sensitivities to all attributes

Option 2: differences only for some attribute-covariate pairs

- interaction with categorical variables
 - e.g. interaction with gender, implying different sensitivities for men and women
- interactions with continuous covariates
 - e.g. continuous interaction with income, implying different sensitivity for each possible income

Need for random taste heterogeneity

- Some taste heterogeneity cannot be explained deterministically
- Data limitations
 - we do not know everything about individuals in our data
 - constraints on behaviour, unobserved socio-demographics, etc
- Idiosyncratic reasons
 - two apparently identical individuals may have different sensitivities
- □ Solution is to allow for *random* heterogeneity
- Preferences not random, simply unobserved
 - use random heterogeneity to deal with this

Mixture models

□ Aim:

- accommodate random taste heterogeneity
- □ Method:
 - allow choice probabilities to vary as function of (unobserved) distribution of sensitivities

Key differences across specifications

- Model specifications without any heterogeneity
 - same probability for all individuals when faced with same choice scenario
- Model specifications with deterministic heterogeneity
 - probabilities vary across individuals
 - we know where on that distribution each person is located
- Model specifications with random heterogeneity
 - probabilities also vary across individuals
 - we do not know where on that distribution each person is located
- In models combining deterministic with random heterogeneity, we can be more certain about where on the distribution a person is

Two broad categories of models

Finite mixtures

- Allow for a limited number of possible values for sensitivities
- Two different implementations:
 - Discrete mixtures: heterogeneity in individual parameters
 - Latent class: finite set of combinations of values for different parameters

Continuous mixtures

- Use continuous statistical distributions to capture heterogeneity
- □ Most flexible type of random utility model in theory
- □ Known as Mixed Logit, or Random Parameters Logit

Basic idea

- Same underlying idea for finite and continuous mixtures
- □ Analyst specifies an underlying model, typically (but not necessarily) MNL
 - in technical terms often referred to as the kernel of the mixture model
- If sensitivities of an individual were known, would have a probability for the choices as in MNL (or other kernel)
- But sensitivities are not known

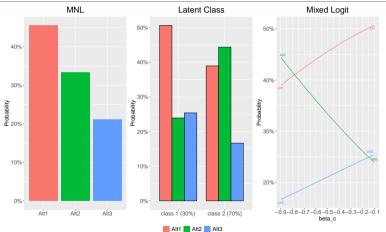
A VERY simple example

 Random cost (TC) coefficient random, fixed constants and sensitivities to free flow time (FFT), slowed down time (SDT) and tolls (TOLL)

	δ_1	δ_2	FFT	SDT	тс	TOLL
Alt 1	1	0	30	7	2.3	5
Alt 2	0	1	36	8	1.2	6
Alt 3	0	0	15	6	2.5	7
β	0.2	0.1	-0.03	-0.08	β_{TC}	-0.5

Three cases:

- MNL: $\beta_{TC} = -0.5$
- Latent class: two classes, with weights of 30% and 70%, and values of β_{TC} of -0.1 and -0.9
- Mixed Logit: β_{TC} is distributed uniformly on [-0.9, -0.1]



Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Misattributing deterministic heterogeneity

- Model estimation will use whatever flexibility we give it to try and improve fit
- $\hfill \Box$ Allowing heterogeneity in only some attributes risks lower fit and misattribution

Number of individuals	Number of individuals 500		500		500		500	
Number of modelled outcomes	modelled outcomes 5000		5000		5000		5000	
Estimated parameters	2		3		3		4	
LL(final)	-2167.405		-2083.096		-2061.137		-2060.733	
Adj.Rho-square (0)	0.374		0.3981		0.4044		0.4042	
AIC	4338.81		4172.19		4128.27		4129.47	
BIC	4351.84		4191.74		4147.82		4155.54	
	estimate	Rob.t-ratio(0)	estimate	Rob.t-ratio(0)	estimate	Rob.t-ratio(0)	estimate	Rob.t-ratio(0
efficacy	0.0199	11.78	0.0279	16.64	0.0202	14.1	0.0212	11.78
risk	-0.3651	-25.18	-0.3647	-26.37	-0.2958	-23.36	-0.3025	-20.12
efficacy interaction for men			-0.021	-12.79			-0.0029	-0.99
risk interaction for men					-0.2033	-13.33	-0.1816	-6.57

 $\hfill\square$ Ignoring heterogeneity in β_k can lead to bias in β_l

Bad idea to keep the cost coefficient fixed!

Misattributing random heterogeneity

As with deterministic heterogeneity, model will use whatever flexibility we give it
Allowing for heterogeneity in only some attributes risks misattribution

Number of individuals	500		500		500		500	
Number of modelled outcomes	5000		5000		5000		5000	
Estimated parameters	3		3		4		5	
LL(final)	-2160.457		-2150.033		-2150.017		-2149.356	
Adj.Rho-square (0)	0.3758		0.3788		0.3785		0.3784	
AIC	4326.91		4306.07		4308.03		4308.71	
BIC	4346.47		4325.62		4334.1		4341.3	
	estimate	Rob.t-ratio(0)	estimate	Rob.t-ratio(0)	estimate	Rob.t-ratio(0)	estimate	Rob.t-ratio(0)
efficacy (mean for lognormal)	-3.9673	-40.54	-3.8255	-48.46	-3.8257	-48.52	-3.7959	-46.23
efficacy (sd for lognormal)	-0.3579	-6.19	0	NA	-0.0316	-0.83	-0.0928	-0.97
risk (mean for lognormal)	-0.9883	-23.84	-0.9401	-22.92	-0.94	-22.92	-0.9301	-21.87
risk (sd for lognormal)	0	NA	0.262	8.54	0.2614	8.55	0.3277	5.27
cholesky term	0	NA	0	NA	0	NA	0.158	1.29

Where is the heterogeneity?

taste heterogeneity

differences in relative sensitivities to individual attributes

differences in baseline preferences for different options

scale heterogeneity

□ differences across individuals in amount of noise (from analyst's perspective)

process heterogeneity

differences in how information is processed, and what decision rule is used

□ In practice, difficult/impossible to disentangle, main focus is taste heterogeneity

Heterogeneity across people and across choices

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Heterogeneity across people and across choices

Different possibilities

- Main scope for heterogeneity is across decision makers
- $\hfill\square$ But also scope across choices for the same individual
 - choices at different points in time, or for different types of choices (e.g. long and short trips)
- □ With deterministic heterogeneity, easy to accommodate both at the same time
- With random heterogeneity, main interest is across people, but can also accommodate intra-individual heterogeneity

Key reference: Hess, S. & Train, K.E. (2011), Recovery of inter- and intra-personal heterogeneity using mixed logit models, Transportation Research Part B, 45(7), pp. 973-990.

Example with latent class: Song, F., Hess, S. & Dekker, T. (2023), Uncovering the link between intra-individual heterogeneity and variety seeking: the case of new shared mobility, Transportation, 51, pp. 371-406.

Implications for data

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Implications for data

Data requirements

- Capturing heterogeneity places additional demands on data
- □ Need rich data, with trade-offs allowing us to observe different choice outcomes
- Heterogeneity in sensitivities may not lead to different outcomes
- □ Focus on categorical variables in some fields makes capturing heterogeneity harder
 - proliferation of parameters
 - identification issues