Mixed Logit

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Mixed Logit

Introduction

- □ Key example of a model allowing for continuous random heterogeneity
- Very powerful model, widely used in academia and practice
- □ This session is more advanced and theoretical, due to the very nature of the model
- You do not necessarily need to understand all the mathematical detail
- □ Important to understand:
 - MMNL is a complex model
 - analyst decisions have major impacts on results

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Setting the scene

- □ Two treatments, with a simple time/money trade-off
- Lower income people have higher cost sensitivity and lower time sensitivity
- With deterministic heterogeneity, can calculate probability for treatment choices for both groups of patients
 - these are probabilities *conditional* on observing income, and hence the time & cost sensitivity according to the model
- The probabilities in the population are distributed according to the size of the two groups of patients
- But we also know the location of each person!

Treatment	1	2		
Wait (days)	28	14		
Cost (f)	100	250		

Low income	(60%	of sample)		
β_t	-0.04			
$egin{array}{c} eta_t \ eta_c \end{array}$	-0.01			
v	-2.12	-3.06		
Р	0.72	0.28		

High income (40% of sample)					
β_t	-0.06				
$\beta_t \\ \beta_c$	-0.005				
V	-2.18 0.48	-2.09			
Р	0.48	0.52			

Distribution of probabilities

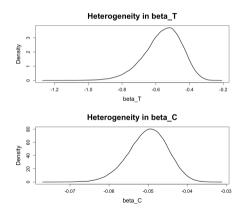
- \Box Let β_n give the (vector of) sensitivities for person n
- \Box If we "know" β_n , we can calculate probabilities
 - e.g. with linear-in-attributes MNL, we have $P_{in}(\beta_n, x) = \frac{e^{\beta_n \times_{in}}}{\sum_{i=1}^{J} e^{\beta_n \times_{jn}}}$
- □ In models with deterministic heterogeneity, we observe the source of heterogeneity
 - can calculate person-specific probabilities and show distribution of P across sample
- □ Problem: with random heterogeneity, only have the distribution
 - not each person's location on that distribution

Mixed Logit in a nutshell

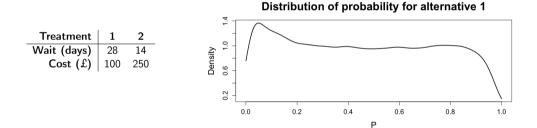
- □ Let $P_{in}(\beta_n, x)$ again be the probability of person *n* choosing alternative *i*
- $\hfill\square$ Value of β_n is now not "observed", but only known up to a probability
- □ β_n follows a continuous (multivariate) distribution over individuals • $\beta_n \sim f(\beta_n \mid \Omega)$
- $\hfill\square$ We know from MNL that if β_n varies across people, then so do the probabilities
- Mixed Logit
 - probabilities follow a continuous distribution across individuals

Illustration

- Negative lognormal distribution for waiting time and cost coefficient
- Ensures purely negative response to time and cost
- What does this mean for the choice probabilities?



Resulting probability for alternative 1



8

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Key decisions

□ An analyst needs to decide:

- which model parameters follow random distributions
- what distributions are used
- whether univariate or multivariate distributions are used
- □ These decisions have major impacts on model results and interpretation

Random parameters

- $\hfill\square$ In theory, we should allow for random heterogeneity in all parameters
 - this would let the data speak
 - and avoid misattribution
- In practice, we need to consider empirical identification (data limitations) and computational costs
- Should think carefully which parameters are most likely to have variation in a population

Distributional assumptions

Too many applications by default rely on Normal distributions

- unbounded, and behaviourally not meaningful in many cases
- problems in computing MRS/WTP
- Many other options exist
 - lognormal distribution (exponential of a Normal)
 - triangular distribution (sum of two independent uniforms with same support)

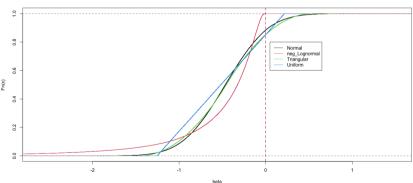
• ...

□ True shape can only be revealed by moving away from parametric distributions

Reference on inappropriate distributions: Hess, S., Bierlaire, M. & Polak, J.W. (2005), Estimation of value of travel-time savings using Mixed Logit models, Transportation Research Part A, 39(2-3), pp. 221-236.

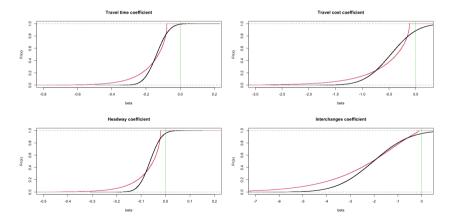
<u>Reference on flexible distributions</u>: Fosgerau, S. & Mabit, S. (2013), Easy and flexible mixture distributions, Economics Letters 120 (2), 206-210.

Example with parametric distributions



Travel cost coefficient

Non-parametric distribution confirms issues



Multi-variate distributions

- The majority of applications rely on univariate distributions
- □ In practice, this may not be reasonable
 - people who care more about time may care less about cost, and vice versa
 - some people may be more sensitive overall than others
- Multi-variate distributions improve fit, reduce bias and allow model to allow for scale heterogeneity (but of course cannot disentangle it!)

Key reference: Hess, S. & Train, K.E. (2017), Correlation and scale in mixed logit models, Journal of Choice Modelling, 23, pp. 1-8.

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Recap on maximum likelihood estimation

- □ Log-likelihood: $LL(\Omega \mid x, Y) = \sum_{n=1}^{N} log(P_{jn_n^*}(\Omega, x))$
- $\square \mathsf{MLE:} \ \widehat{\Omega} = \arg \max_{\Omega} \mathsf{LL} \left(\Omega \mid x, Y \right)$
- \Box Optimisation requires $P_{jn_n^*}(\Omega, x)$, $\forall n$
 - · i.e. estimation requires us to calculate the probabilities of the choices in the data
- □ The issue now is how to calculate the probabilities for choices in a Mixed Logit model

Econometrics

- □ Let $P_{in}(\beta_n, x)$ be probability of person *n* choosing alternative *i*
- \Box We have a continuous distribution of β over individuals, $\beta_n \sim f(\beta_n \mid \Omega)$
- \Box We do not know where on the distribution person *n* is
- □ Example for single choice task (in practice we will use repeated choices)

• Unconditional (on β_n) choice probability:

$$P_{in}(\Omega, x) = \int_{\beta_n} \left[P_{in}(\beta_n, x) f(\beta_n \mid \Omega) \right] d\beta_n$$

Probabilities given by an integral without a closed form solution

- cup Need to use approximation via numerical integration over distributions of eta
 - often done using Monte Carlo simulation, giving us a simulated log-likelihood

Numerical simulation and impact of simulation noise

- Monte Carlo simulation
 - approximate integral by averaging probabilities across large number of draws
- Computationally demanding
- But significant simulation error with low number of draws
 - Even more significant in more complex models
- Would translate into error in log-likelihood
 - has strong impact on parameter estimates!
 - bad idea to use high number of draws only for final model
- Use of quasi-random draws can help somewhat

Parameters

- \square With MNL (and other fixed coefficients models), we estimate values of β
 - this includes constants, parameters multiplying attributes, interactions, etc
- The situation changes when we include random components in our model, such as random coefficients
- \Box Example: cost coefficient (β_c) follows a random distribution
 - we do not obtain an estimate for β_c
 - we obtain estimates for the parameters of the distribution of β_c , e.g. mean and std dev
- $\Box \text{ We have } \beta_n \sim f(\beta_n \mid \Omega)$
 - Ω is a vector of parameters for the multivariate distribution of β in our data
 - we obtain estimates for Ω
 - for any elements of β that are not random, we obtain a point estimate

Illustrative example

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Illustrative example

Application to Swiss VTT data

- Binary unlabelled public transport route choice, with alternatives described by travel time (TT), travel cost (TC), headway (HW), interchanges (CH)
- Simple linear in attributes utility function

$$V_{jnt} = \delta_j + \beta_{tt} TT_{jnt} + \beta_{tc} TC_{jnt} + \beta_{hw} HW_{jnt} + \beta_{ch} CH_{jnt}$$

- □ ASC normalisation: $\delta_2 = 0$
- \square For Mixed Logit, use negative lognormal distributions for the four β parameters, e.g.:

$$\beta_{tt} = -e^{\mu_{\log(\beta_{tt})} + \sigma_{\log(\beta_{tt})} \cdot \xi_{tt}}$$

 $\hfill\square$ Ensures sign of β is purely negative

 $\Box \xi_{tt} \sim N(0,1)$, so sign of σ estimate irrelevant (it's not saying that the sd is negative!)

Illustrative example

Results

Big improvement in model fit, and all standard deviations different from zero
We will look at how to interpret these results later

Model name Model description Estimation method Modelled outcomes	: MNL_swiss : MNL model on Swiss route choice d : bgw : 3492	Model name Model description Estimation meth Modelled outcom LL(final)	on : od : es :	MMNL_swiss_pa MMNL model wi bgw 3492 -1442.84	nel_all_negLN th negative Lognormal	distributions	
LL(final)	: -1665.62	Estimated param	eters :				
Estimated parameters	: 5	Estimates (robu					MNL_swiss MMNL_swiss_panel_ Difference
Estimates (robust covaria	nce matrix, 1-sided p-values):	asc1	timate std. err -0.039 0.0	71 -0.6	0.289		Likelihood ratio
estimate std. error	t-ratio p (1-sided)		-1.985 0.1 -0.527 0.0		<2e-16 *** <2e-16 ***		Degrees of freedo
asc1 -0.0159 0.0457	-0.3 0.4		-0.527 0.0 -0.961 0.1		<2e-16 *** 4e-08 ***		Likelihood ratio
b_tt -0.0598 0.0067	-8.9 <2e-16 ***		-0.940 0.0		<2e-16 ***		
b_tc -0.1317 0.0236	-5.6 1e-08 ***		-2.923 0.0	90 -32.4	<2e-16 ***		
b_hw -0.0374 0.0023	-16.2 <2e-16 ***		0.774 0.3		0.008 **		
b_ch -1.1521 0.0614	-18.8 <2e-16 ***		0.618 0.0 -0.887 0.1		3e-14 *** 2e-12 ***		
 Signif. codes: 0 '***'0	0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1	Signif. codes:	0 '***' 0.001	·**' 0.01 ·*'	0.05 '.' 0.1 ' ' 1		

222.78