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Mixed Logit

Introduction

Key example of a model allowing for continuous random heterogeneity
Very powerful model, widely used in academia and practice

0
0
O This session is more advanced and theoretical, due to the very nature of the model
O You do not necessarily need to understand all the mathematical detail

0

Important to understand:

= MMNL is a complex model
= analyst decisions have major impacts on results
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Overview

Setting the scene

2 Two treatments, with a simple time/money trade-off Treatment | 1 2
. . o Wait (d
0 Lower income people have higher cost sensitivity and lower “‘20‘5;"’(’23 o e
tm:]e sen5|t|V|-ty. ] ] Low income (60% of sample)
0 With deterministic heterogeneity, can calculate probability Be oo
for treatment choices for both groups of patients ﬁ‘j T 306
= these are probabilities conditional on observing income, and Pjo72 02
hence the time & cost sensitivity according to the model High income (40% of sample)
e . . B -0.06
0 The probabilities in the population are distributed 5 -0.005
according to the size of the two groups of patients P

3 But we also know the location of each person!
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Overview

Distribution of probabilities

a Let S, give the (vector of) sensitivities for person n
O If we “know” ,, we can calculate probabilities

= e.g. with linear-in-attributes MNL, we have P, (8,,x) = %
j=1

2 In models with deterministic heterogeneity, we observe the source of heterogeneity
= can calculate person-specific probabilities and show distribution of P across sample

0 Problem: with random heterogeneity, only have the distribution

= not each person’s location on that distribution
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Overview

Mixed Logit in a nutshell

O

Let Pj, (8n, x) again be the probability of person n choosing alternative /

(]

Value of 3, is now not “observed”, but only known up to a probability

B follows a continuous (multivariate) distribution over individuals

* B~ (Bn | Q)

We know from MNL that if 3, varies across people, then so do the probabilities
Mixed Logit

= probabilities follow a continuous distribution across individuals

(]

O o
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Overview

Illustration

0 Negative lognormal
distribution for waiting time
and cost coefficient

0 Ensures purely negative
response to time and cost

0 What does this mean for
the choice probabilities?

Heterogeneity in beta_T

Heterogeneity in beta_C
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Overview

Resulting probability for alternative 1

Distribution of probability for alternative 1

Treatment | 1 2 o
Wait (days) | 28 14 z ]
Cost (£) | 100 250 .

0‘0 0!2 0.‘4 0!6 0‘8 1.0
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Model specification

Key decisions

0 An analyst needs to decide:

= which model parameters follow random distributions
= what distributions are used

= whether univariate or multivariate distributions are used

0 These decisions have major impacts on model results and interpretation
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Model specification

Random parameters

3 In theory, we should allow for random heterogeneity in all parameters

= this would let the data speak
= and avoid misattribution

3 In practice, we need to consider empirical identification (data limitations) and
computational costs

2 Should think carefully which parameters are most likely to have variation in a
population
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Model specification

Distributional assumptions

0 Too many applications by default rely on Normal distributions

= unbounded, and behaviourally not meaningful in many cases
= problems in computing MRS/WTP

O Many other options exist

= lognormal distribution (exponential of a Normal)
= triangular distribution (sum of two independent uniforms with same support)

O True shape can only be revealed by moving away from parametric distributions

Reference on inappropriate distributions: Hess, S., Bierlaire, M. & Polak, J.W. (2005), Estimation of value of
travel-time savings using Mixed Logit models, Transportation Research Part A, 39(2-3), pp. 221-236.

Reference on flexible distributions: Fosgerau, S. & Mabit, S. (2013), Easy and flexible mixture distributions,
Economics Letters 120 (2), 206-210.
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Model specification

Example with parametric distributions

Travel cost coefficient

Fn()
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Model specification

Non-parametric distribution confirms issues

bet bet
Headway coefficient Interchanges coefficient
===
2. .
beta bet
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Model specification

Multi-variate distributions

0 The majority of applications rely on univariate distributions

O In practice, this may not be reasonable
= people who care more about time may care less about cost, and vice versa
= some people may be more sensitive overall than others

0 Multi-variate distributions improve fit, reduce bias and allow model to allow for scale
heterogeneity (but of course cannot disentangle it!)

Key reference: Hess, S. & Train, K.E. (2017), Correlation and scale in mixed logit models, Journal of Choice
Modelling, 23, pp. 1-8.
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Estimation

Recap on maximum likelihood estimation

2 Log-likelihood: LL(Q2| x,Y) = Zyzl log (Pjn# (Q,x))
0 MLE: Q = argmax LL Q| x,Y)
Q

2 Optimisation requires P« (Q,x), ¥n
= i.e. estimation requires us to calculate the probabilities of the choices in the data

O The issue now is how to calculate the probabilities for choices in a Mixed Logit model
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Estimation

Econometrics

Let Pj, (8n, x) be probability of person n choosing alternative i
We have a continuous distribution of 8 over individuals, 8, ~ f (5, | Q)
We do not know where on the distribution person n is

Example for single choice task (in practice we will use repeated choices)

U 0o 0 0 o

Unconditional (on 3,) choice probability:

Pin (2, ) = f [Pir (B %) (B | )],

n

(]

Probabilities given by an integral without a closed form solution
0 Need to use approximation via numerical integration over distributions of 3
= often done using Monte Carlo simulation, giving us a simulated log-likelihood
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Estimation

Numerical simulation and impact of simulation noise

0 Monte Carlo simulation
= approximate integral by averaging probabilities across large number of draws
4 Computationally demanding
0 But significant simulation error with low number of draws
= Even more significant in more complex models
3 Would translate into error in log-likelihood

= has strong impact on parameter estimates!
= bad idea to use high number of draws only for final model

4 Use of quasi-random draws can help somewhat

Choice Modelling Academy ©



Estimation

Parameters

2 With MNL (and other fixed coefficients models), we estimate values of
= this includes constants, parameters multiplying attributes, interactions, etc

O The situation changes when we include random components in our model, such as
random coefficients
2 Example: cost coefficient (3.) follows a random distribution

= we do not obtain an estimate for 3.
= we obtain estimates for the parameters of the distribution of ., e.g. mean and std dev

2 We have B, ~ f (8n | Q)
= Q is a vector of parameters for the multivariate distribution of 3 in our data

= we obtain estimates for Q
= for any elements of 3 that are not random, we obtain a point estimate

Choice Modelling Academy ©



[lustrative example




lllustrative example

Application to Swiss VTT data

O Binary unlabelled public transport route choice, with alternatives described by travel
time (TT), travel cost (TC), headway (HW), interchanges (CH)

2 Simple linear in attributes utility function

Vint = 0; + Bt T Tint + Bic TCint + Baw HWint + Beh CHjne

0 ASC normalisation: do =0

2 For Mixed Logit, use negative lognormal distributions for the four 3 parameters, e.g.:

B = —eltog(Ber) T log (Bee) €t

0 Ensures sign of S is purely negative

3 & ~ N(0,1), so sign of o estimate irrelevant (it's not saying that the sd is negative!)
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lllustrative example

Results

0O Big improvement in model fit, and all standard deviations different from zero

0 We will look at how to interpret these results later

Model name MMNL_swiss_panel_all_t

: MNL_swiss Model description MINL model with negative Lognormal distributions
: MNL model on Swiss route choice data Estination method bgw

Estimation method bgw Modelled outcomes
Modelled outcomes
LL(final)
Estimated paramete:
LL(final) : -1665. stimated parame

Estimated parameters
Estimates (robust covariance matrix, 1-sided p-values): ML_swiss

Estimates (robust covariance matrix, 1-sided p-values): estimate std. error t-ratio p (1-sided)

b_log_tt_mu
b_log_tt_sig

Likelihood ratio test-value:  445.56
4

estimate std. error t-ratio p (1-sided) of freedom
4

0.0457 -0.3 o

0.0067 -8.9 <2e-16
0.0236 -5.6 le-08
0.0023 -16.2 <2e-16
0.0614 -18.8 <2e-16

gr
Likelihood ratio test p-value: 3.96e-95

-0.887
Signif. codes: ‘#%%2 0.001 ‘**’ 0.01 ‘*’ 0.05

ignif. codes: © ***’ 9.001 ‘**’ 9.01 ‘*’ 0.05
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