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Mixed Logit
Introduction

q Key example of a model allowing for continuous random heterogeneity
q Very powerful model, widely used in academia and practice
q This session is more advanced and theoretical, due to the very nature of the model
q You do not necessarily need to understand all the mathematical detail
q Important to understand:

‚ MMNL is a complex model
‚ analyst decisions have major impacts on results
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Overview
Setting the scene

q Two treatments, with a simple time/money trade-off
q Lower income people have higher cost sensitivity and lower

time sensitivity
q With deterministic heterogeneity, can calculate probability

for treatment choices for both groups of patients
‚ these are probabilities conditional on observing income, and
hence the time & cost sensitivity according to the model

q The probabilities in the population are distributed
according to the size of the two groups of patients

q But we also know the location of each person!

Treatment 1 2
Wait (days) 28 14

Cost (£) 100 250

Low income (60% of sample)
βt -0.04
βc -0.01
V -2.12 -3.06
P 0.72 0.28

High income (40% of sample)
βt -0.06
βc -0.005
V -2.18 -2.09
P 0.48 0.52
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Overview
Distribution of probabilities

q Let βn give the (vector of) sensitivities for person n
q If we “know” βn, we can calculate probabilities

‚ e.g. with linear-in-attributes MNL, we have Pin pβn, xq “
eβn xin

řJ
j“1 eβn xjn

q In models with deterministic heterogeneity, we observe the source of heterogeneity
‚ can calculate person-specific probabilities and show distribution of P across sample

q Problem: with random heterogeneity, only have the distribution
‚ not each person’s location on that distribution
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Overview
Mixed Logit in a nutshell

q Let Pin pβn, xq again be the probability of person n choosing alternative i

q Value of βn is now not “observed”, but only known up to a probability
q βn follows a continuous (multivariate) distribution over individuals

‚ βn „ f pβn | Ωq

q We know from MNL that if βn varies across people, then so do the probabilities
q Mixed Logit

‚ probabilities follow a continuous distribution across individuals
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Overview
Illustration

q Negative lognormal
distribution for waiting time
and cost coefficient

q Ensures purely negative
response to time and cost

q What does this mean for
the choice probabilities?



Choice Modelling Academy © 8

Overview
Resulting probability for alternative 1

Treatment 1 2
Wait (days) 28 14

Cost (£) 100 250
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Model specification
Key decisions

q An analyst needs to decide:
‚ which model parameters follow random distributions
‚ what distributions are used
‚ whether univariate or multivariate distributions are used

q These decisions have major impacts on model results and interpretation



Choice Modelling Academy © 11

Model specification
Random parameters

q In theory, we should allow for random heterogeneity in all parameters
‚ this would let the data speak
‚ and avoid misattribution

q In practice, we need to consider empirical identification (data limitations) and
computational costs

q Should think carefully which parameters are most likely to have variation in a
population
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Model specification
Distributional assumptions
q Too many applications by default rely on Normal distributions

‚ unbounded, and behaviourally not meaningful in many cases
‚ problems in computing MRS/WTP

q Many other options exist
‚ lognormal distribution (exponential of a Normal)
‚ triangular distribution (sum of two independent uniforms with same support)
‚ ...

q True shape can only be revealed by moving away from parametric distributions

Reference on inappropriate distributions: Hess, S., Bierlaire, M. & Polak, J.W. (2005), Estimation of value of
travel-time savings using Mixed Logit models, Transportation Research Part A, 39(2-3), pp. 221-236.

Reference on flexible distributions: Fosgerau, S. & Mabit, S. (2013), Easy and flexible mixture distributions,
Economics Letters 120 (2), 206-210.
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Model specification
Example with parametric distributions
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Model specification
Non-parametric distribution confirms issues
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Model specification
Multi-variate distributions

q The majority of applications rely on univariate distributions
q In practice, this may not be reasonable

‚ people who care more about time may care less about cost, and vice versa
‚ some people may be more sensitive overall than others

q Multi-variate distributions improve fit, reduce bias and allow model to allow for scale
heterogeneity (but of course cannot disentangle it!)

Key reference: Hess, S. & Train, K.E. (2017), Correlation and scale in mixed logit models, Journal of Choice
Modelling, 23, pp. 1-8.
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Estimation
Recap on maximum likelihood estimation

q Log-likelihood: LL pΩ | x ,Y q “
řN

n“1 log
`

Pjn˚n
pΩ, xq

˘

q MLE: pΩ “ arg max
Ω

LL pΩ | x ,Y q

q Optimisation requires Pjn˚n
pΩ, xq , @n

‚ i.e. estimation requires us to calculate the probabilities of the choices in the data

q The issue now is how to calculate the probabilities for choices in a Mixed Logit model
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Estimation
Econometrics
q Let Pin pβn, xq be probability of person n choosing alternative i

q We have a continuous distribution of β over individuals, βn „ f pβn | Ωq

q We do not know where on the distribution person n is
q Example for single choice task (in practice we will use repeated choices)
q Unconditional (on βn) choice probability:

Pin pΩ, xq “

ż

βn

rPin pβn, xq f pβn | Ωqs dβn

q Probabilities given by an integral without a closed form solution
q Need to use approximation via numerical integration over distributions of β

‚ often done using Monte Carlo simulation, giving us a simulated log-likelihood
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Estimation
Numerical simulation and impact of simulation noise

q Monte Carlo simulation
‚ approximate integral by averaging probabilities across large number of draws

q Computationally demanding
q But significant simulation error with low number of draws

‚ Even more significant in more complex models
q Would translate into error in log-likelihood

‚ has strong impact on parameter estimates!
‚ bad idea to use high number of draws only for final model

q Use of quasi-random draws can help somewhat
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Estimation
Parameters

q With MNL (and other fixed coefficients models), we estimate values of β
‚ this includes constants, parameters multiplying attributes, interactions, etc

q The situation changes when we include random components in our model, such as
random coefficients

q Example: cost coefficient (βc) follows a random distribution
‚ we do not obtain an estimate for βc
‚ we obtain estimates for the parameters of the distribution of βc , e.g. mean and std dev

q We have βn „ f pβn | Ωq
‚ Ω is a vector of parameters for the multivariate distribution of β in our data
‚ we obtain estimates for Ω
‚ for any elements of β that are not random, we obtain a point estimate
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Illustrative example
Application to Swiss VTT data
q Binary unlabelled public transport route choice, with alternatives described by travel

time (TT), travel cost (TC), headway (HW), interchanges (CH)
q Simple linear in attributes utility function

Vjnt “ δj ` βttTTjnt ` βtcTCjnt ` βhwHWjnt ` βchCHjnt

q ASC normalisation: δ2 “ 0
q For Mixed Logit, use negative lognormal distributions for the four β parameters, e.g.:

βtt “ ´e
µlogpβtt q

`σlogpβtt q
¨ξtt

q Ensures sign of β is purely negative
q ξtt „ N p0, 1q, so sign of σ estimate irrelevant (it’s not saying that the sd is negative!)
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Illustrative example
Results

q Big improvement in model fit, and all standard deviations different from zero
q We will look at how to interpret these results later
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