Latent class models

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

The basics

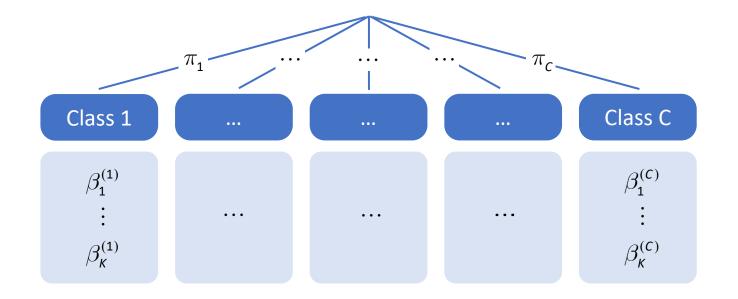
Latent classes

- Discrete groups of decision-makers with specific preferences, called classes
- Classes are unobserved (latent)
 - Decision-makers belong to one of the classes
 - Data allows one to obtain an estimated probability of class membership
- Parameters for all classes are estimated simultaneously

The basics

Notation

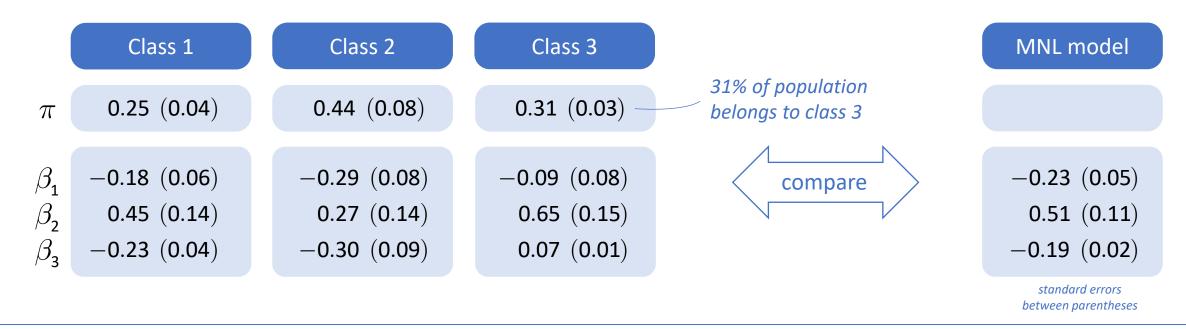
- ightharpoonup Assume C classes, indexed as c=1,...,C
- Each class has class-specific parameters $\beta_1^{(c)},...,\beta_K^{(c)}$
- Each class has membership probability π_c such that $\sum_{c=1}^{\infty} \pi_c = 1$



The basics

Example

- Consider a choice model with the following utility functions
 - $V_A = \beta_1 + \beta_2 \cdot X_A$
 - $V_{B} = \beta_{3} \cdot X_{B}$
- Assume 3 classes



Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Recall maximum likelihood estimation procedure

- Exogenous data x
- Choice observations y
- \square Specify utility functions with parameters β
- Find parameter estimates $\hat{\beta}$ that maximise the (log)likelihood of observing **y** based on data **x**

$$\hat{\boldsymbol{\beta}} = \max_{\boldsymbol{\beta}} \sum_{n=1}^{N} \log P_n(\mathbf{x}, \mathbf{y}, \boldsymbol{\beta})$$

where
$$P_n(\mathbf{x},\mathbf{y},\mathbf{\beta}) = \prod_{t=1}^{T} \prod_{j=1}^{J} (P_{ntj}(\mathbf{x},\mathbf{\beta}))^{y_{ntj}}$$

Maximum likelihood estimation for latent class models

- Exogenous data x
- Choice observations y
- \square Specify utility functions with parameters β
- Specify number of classes C
- \Box Find class-specific parameter estimates $\hat{\beta}^{(c)}$ and class membership probabilities $\pi^{(c)}$ that maximise the (log)likelihood of observing \mathbf{y} based on data \mathbf{x} using class-weighted probabilities

$$\left(\hat{\pmb{\beta}}^{(1)}, \, ..., \hat{\pmb{\beta}}^{(c)}, \hat{\pi}^{(1)}, \, ..., \hat{\pi}^{(c)}\right) = \max_{\pmb{\beta}, \pi} \sum_{n=1}^{N} \log \sum_{c=1}^{C} \pi^{(c)} \cdot P_n(\mathbf{x}, \mathbf{y}, \pmb{\beta}^{(c)})$$
 where $\sum_{c=1}^{C} \pi^{(c)} = 1$

Selection of model type for each class

- Choice probabilities $P_{ntj}(\mathbf{x}, \boldsymbol{\beta}^{(c)})$ of each latent class can be derived from
 - Multinomial logit (MNL)
 - Nested logit
 - Heteroskedastic logit
 - Etc.
- Combinations can provide flexibility
- Most common: MNL for each class

$$P_{ntj}(\mathbf{x}, \mathbf{\beta}^{(c)}) = \frac{\exp(\mathbf{\beta}^{(c)} \mathbf{x}_{ntj})}{\sum_{i} \exp(\mathbf{\beta}^{(c)} \mathbf{x}_{nti})}$$

Class membership probabilities

- lacktriangledown Instead of estimating $\pi^{(c)}$ directly, they are typically estimated indirectly
- ullet Use logit model with only constants $\delta^{(c)}$

$$\pi^{(c)} = \frac{\exp(\delta^{(c)})}{\sum_{c'} \exp(\delta^{(c')})}$$

- Class membership constant of one class must be normalised to zero
 - For example, for the last class, *C*, we set $\delta^{(c)} = 0$
 - It does not matter which class you choose for normalisation

Example

- Estimate constants in logit model for class membership
- Normalise class membership constant of Class 3 to zero
- Most people belong to Class 2, least people belong to Class 1

	Class 1	Class 2	Class 3		0
$(\delta$	-0.21 (0.02)	0.34 (0.05)	0 ()	31% of population belongs to class 3	$\pi^{(3)} = \frac{e^0}{e^{-0.21} + e^{0.34} + e^0} = 0.31$
$eta_{\!\scriptscriptstyle f 1} \ eta_{\!\scriptscriptstyle f 2}$	-0.18 (0.06) 0.45 (0.14)	-0.29 (0.08) 0.27 (0.14)	-0.09 (0.08) 0.65 (0.15)		
eta_{3}	-0.23 (0.04)	-0.30 (0.09)	0.07 (0.01)		

General class membership functions

- lacktriangle Class membership probabilities $\pi^{(c)}$ may depend on
 - socio-demographic variables z
 - scenario variables w
 - other variables
- \Box Use logit model with class membership functions $M^{(c)}$

$$\pi^{(c)} = \frac{\exp(\mathbf{M}^{(c)})}{\sum_{c'} \exp(\mathbf{M}^{(c')})}$$
, $\mathbf{M}^{(c)} = \delta^{(c)} + \gamma^{(c)} \mathbf{z} + \mathbf{\omega}^{(c)} \mathbf{w}$

- One needs to normalise parameters of one class to zero
 - For example, for the last class, *C*, we set $\delta^{(c)} = 0$, $\gamma^{(c)} = 0$, and $\omega^{(c)} = 0$
 - It does not matter which class you choose for normalisation

Example

- Assume the following class membership functions
 - $M^{(1)} = \delta^{(1)} + \gamma_{Age}^{(1)} \cdot Age$
 - $M^{(2)} = \delta^{(2)} + \gamma_{Age}^{(2)} \cdot Age$
 - $M^{(3)} = 0$

Class 1

Class 2

Class 3

$$\begin{array}{ccc} \delta & - 0.20 \; (0.02) \\ \gamma_{\mathrm{Age}} & 0.02 \; (0.01) \end{array}$$

$$-0.03 (0.01)$$

$$\beta_1$$
 -0.17 (0.07)

$$\beta_1 = -0.17 (0.07)$$

$$\beta_3$$
 -0.20 (0.04)

$$-0.28 (0.07)$$

$$-0.31 (0.09)$$

$$-0.09(0.06)$$

$$\pi^{(3)} = \frac{e^0}{e^{-0.20 + 0.02 \cdot Age} + e^{0.31 - 0.03 \cdot Age} + e^0}$$

age = 20:
$$\pi^{(3)} = 0.34$$

age = 70:
$$\pi^{(3)} = 0.22$$

Starting values for parameters when estimating latent class models

- Use parameter estimates from MNL model
- For each class, make small deviations to avoid getting 'stuck' during model estimation
- Try multiple starting values

	Class 1	Class 2	Class 3	MNL model
δ	-0.01	0.01	0	
$\gamma_{\rm Age}$	0.01	-0.01	0	
$eta_{\!\scriptscriptstyle f 1}$	-0.22	-0.24	-0.23	-0.23
β_{2}	0.50	0.51	0.52	0.51
β_3	-0.18	-0.20	-0.19	-0.19

Choosing number of classes, C

- Start with two classes
- Gradually increase the number of classes and re-estimate the model
- Compare models with different number of classes based on model fit and interpretability
 - More classes always improves the LL value but requires estimating (many) more parameters
 - Models with low AIC or BIC are preferred
 - Models with meaningful/explainable insights are preferred

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Model

Utility functions:

$$V(\mathsf{RouteA}) = \beta_{\mathsf{ASC}} + \beta_{\mathsf{TT}} \cdot \mathsf{TravelTime} + \beta_{\mathsf{TC}} \cdot \mathsf{TravelCost} + \beta_{\mathsf{HW}} \cdot \mathsf{Headway} + \beta_{\mathsf{CH}} \cdot \mathsf{Interchanges}$$

$$V(\mathsf{RouteB}) = \beta_{\mathsf{TT}} \cdot \mathsf{TravelTime} + \beta_{\mathsf{TC}} \cdot \mathsf{TravelCost} + \beta_{\mathsf{HW}} \cdot \mathsf{Headway} + \beta_{\mathsf{CH}} \cdot \mathsf{Interchanges}$$

Assume two classes, with only constants in membership functions:

$$\mathbf{M}^{(1)} = \delta^{(1)}$$

$$M^{(2)} = 0$$

Estimation results

- Class 1 members are much more cost sensitive
- Class 1 members are much more averse to interchanges
- Class membership probability is not statistically different across classes (so about 50-50%)

$$\delta \quad -0.039 \; (0.268) \qquad 0 \; (--) \qquad \begin{array}{c} 51\% \; of \; population \\ belongs \; to \; class \; 2 \end{array} \qquad \pi^{(2)} = \frac{e^0}{e^{-0.039} + e^0} = 0.51 \\ \beta_{\rm ASC} \qquad -0.045 \; (0.048) \qquad \qquad ASC \; assumed \; generic \; across \; both \; classes \\ \beta_{\rm TT} \qquad -0.098 \; (0.014) \qquad -0.074 \; (0.009) \\ \beta_{\rm TC} \qquad -0.534 \; (0.094) \qquad -0.096 \; (0.016) \\ \beta_{\rm HW} \qquad -0.047 \; (0.006) \qquad -0.040 \; (0.004) \\ \beta_{\rm CH} \qquad -2.168 \; (0.185) \qquad -0.764 \; (0.105) \end{array}$$

Model comparison

Which model is preferred?

MNL model

- 1 class
- 5 parameters

Latent class model

- 2 classes
- 10 parameters

```
      LL(final)
      : -1665.62

      Rho-squared vs equal shares
      : 0.3119

      Adj.Rho-squared vs equal shares
      : 0.3098

      Rho-squared vs observed shares
      : 0.3118

      Adj.Rho-squared vs observed shares
      : 0.3102

      AIC
      : 3341.24

      BIC
      : 3372.03
```

```
      LL(final, whole model)
      : -1562.08

      Rho-squared vs equal shares
      : 0.3546

      Adj.Rho-squared vs observed shares
      : 0.3505

      Rho-squared vs observed shares
      : 0.3546

      Adj.Rho-squared vs observed shares
      : 0.3513

      AIC
      : 3144.16

      BIC
      : 3205.74
```

Model comparison

Which model is preferred?

- MNL model
 - 1 class
 - 5 parameters

LL(final)	: -	-1665.62
Rho-squared vs equal shares	:	0.3119
Adj.Rho-squared vs equal shares	:	0.3098
Rho-squared vs observed shares	:	0.3118
Adj.Rho-squared vs observed shares	:	0.3102
AIC	:	3341.24
BIC	:	3372.03

- Latent class model
 - 2 classes
 - 10 parameters

```
LL(final, whole model) : -1562.08
Rho-squared vs equal shares : 0.3546
Adj.Rho-squared vs equal shares : 0.3505
Rho-squared vs observed shares : 0.3546
Adj.Rho-squared vs observed shares : 0.3513
AIC : 3144.16
BIC : 3205.74
```