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The basics

Latent classes

o Discrete groups of decision-makers with specific preferences, called classes

o Classes are unobserved (latent)
= Decision-makers belong to one of the classes
= Data allows one to obtain an estimated probability of class membership

0 Parameters for all classes are estimated simultaneously
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The basics

Notation

o Assume Cclasses, indexedas c=1,...,C

0 Each class has class-specific parameters 39, ..., 5\ )

0 Each class has membership probability 7 such that ch =1

c=1
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The basics

Example

0 Consider a choice model with the following utility functions
= V,=0,+05,X,
= = 63°XB

o Assume 3 classes

31% of population
g 0.25 (004) 0.44 (008) 0.31 (003) —— g be/ongs to class 3
3, —0.18 (0.06) —0.29 (0.08) —0.09 (0.08) < compare > —0.23 (0.05)
3, 0.5 (0.14) 0.27 (0.14) 0.65 (0.15) 0.51 (0.11)
3, —0.23 (0.04) —0.30 (0.09) 0.07 (0.01) —0.19 (0.02)

standard errors
between parentheses
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Estimating latent class models

Recall maximum likelihood estimation procedure

0 Exogenous data x

0 Choice observationsy

o Specify utility functions with parameters

n

0 Find parameter estimates B that
maximise the (log)likelihood of observing y based on data x

y ntj

ﬁ:mﬁax ;man(x,v,B) where P,(x,y,B)= HH( (6B))

t=1

Choice Modelling Academy © 9



Estimating latent class models

Maximum likelihood estimation for latent class models

0 Exogenous data x

0 Choice observationsy

o Specify utility functions with parameters
o Specify number of classes C

o Find class-specific parameter estimates ﬁ(c) and class membership probabilities 7' that
maximise the (log)likelihood of observing y based on data x using class-weighted probabilities

3 C
(ﬁ(l); B9, 7Y, rr;aleong (X, Y, B ) where ZW(C) _
c=1

n=1
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Estimating latent class models

Selection of model type for each class

0 Choice probabilities P, (x,B'”') of each latent class can be derived from
= Multinomial logit (MNL)
= Nested logit
= Heteroskedastic logit
= Etc.

o Combinations can provide flexibility

eXp(B(C)xntj)
exp(B'x,,)

1

o Most common: MNL for each class P (x,B)=
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Estimating latent class models

Class membership probabilities

o Instead of estimating 7' directly, they are typically estimated indirectly

o Use logit model with only constants §'

(© exp(6')

B Zc,exp(é(cl))

s

0 Class membership constant of one class must be normalised to zero
= For example, for the last class, C, we set 5 =0
= |t does not matter which class you choose for normalisation
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Estimating latent class models

Example

o Estimate constants in logit model for class membership
o Normalise class membership constant of Class 3 to zero

0 Most people belong to Class 2, least people belong to Class 1

T eSS GO CEEEEEEEE—— . 31% of population
:\ 6 —0.21 (002) 0.34 (005) 0 (--) —I:—/ belongs to class 3
3, —0.18 (0.06) —0.29 (0.08) —0.09 (0.08)
3, 0.5 (0.14) 0.27 (0.14) 0.65 (0.15)
3, —0.23 (0.04) —0.30 (0.09) 0.07 (0.01)

(3) _

0

e—0.21 _|_eo.34 _I_eO

—=0.31
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Estimating latent class models

General class membership functions

o Class membership probabilities 7' may depend on
= socio-demographic variables z
= scenario variables w
= other variables

o Use logit model with class membership functions M

(c) exp(M(C))

> exp(M )’

7r M9 =691y 92+ 0w

0 One needs to normalise parameters of one class to zero
= For example, for the last class, C, we set §' =0, y'“ =0, and ©'“ =0
= It does not matter which class you choose for normalisation
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Estimating latent class models

Example

0 Assume the following class membership functions
g =6 +4) - Age
. M(z) =6% +~2 . Age
ge

eO

© _—0.20+0.02-Age + 0.31-0.03-Age 0
e +e

age=20: 7 =0.34
ﬁl —0.17 (0.07) —0.28 (0.07) —0.09 (0.06) age=70: 7% =0.22

B3,  0.46 (0.13) 0.25 (0.13) 0.62 (0.12)
3, —0.20 (0.04) —0.31 (0.09) 0.05 (0.02)
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Estimating latent class models

Starting values for parameters when estimating latent class models

0 Use parameter estimates from MNL model
o For each class, make small deviations to avoid getting ‘stuck’ during model estimation

o Try multiple starting values

) —0.01 0.01 0
Y age 0.01 —0.01 0
3, ~0.22 —0.24 ~0.23 < ~0.23
3, 0.50 0.51 0.52 0.51

ﬁ3 —0.18 —0.20 —0.19 —0.19
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Estimating latent class models

Choosing number of classes, C

o Start with two classes
0 Gradually increase the number of classes and re-estimate the model

0 Compare models with different number of classes based on model fit and interpretability
= More classes always improves the LL value but requires estimating (many) more parameters
= Models with low AIC or BIC are preferred
= Models with meaningful/explainable insights are preferred
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Application to Swiss value of time study

Model

o Utility functions:

V(RouteA) = (.. + B - TravelTime + (.. - TravelCost + 3, -Headway + 3, - Interchanges
V(RouteB) = B - TravelTime + 3, - TravelCost + 3, -Headway + (3, - Interchanges

o Assume two classes, with only constants in membership functions:

MO — 0
M? =0
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Application to Swiss value of time study

Estimation results

o Class 1 members are much more cost sensitive
o Class 1 members are much more averse to interchanges
o Class membership probability is not statistically different across classes (so about 50-50%)

0

51% of population _(2) _ € -
) —0.039 (0.268) 0(-) —— belongs to class 2 = e 0039 4 o0 0-51
6ASC —0.045 (0.048) ASC assumed generic across both classes
B, —0.098 (0.014)  —0.074 (0.009)
ﬁTC —0.534 (0.094) —0.096 (0.016)
B, —0.047 (0.006)  —0.040 (0.004)
ﬁCH —2.168 (0.185) —0.764 (0.105)
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Application to Swiss value of time study

Model comparison

o Which model is preferred?

o MNL model

= 1class
= 5 parameters

o Latent class model
= 2 classes
= 10 parameters

LL{Final)

Rho-squared vs equal shares
Adj.Rho-squared vs equal shares
Rho-squared vs observed shares
Adj.Rho-squared vs observed shares
ATC

BIC

LL{final, whole model)

Rho-squared vs equal shares
Adj.Rho-squared vs equal shares
Rho-squared vs observed shares
Adj.Rho-squared vs observed shares
ATC

BIC

: -1665.62

0.3119
0. 3098
0.3118
0.3102
3341. 24
3372.03

: -1562.08

0.3546
0. 3505
0. 3546
0.3513
3144.16
3205.74
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Application to Swiss value of time study

Model comparison

o Which model is preferred?

o MNL model

= 1class
= 5 parameters

LL{Final)

Rho-squared vs equal shares
Adj.Rho-squared vs equal shares
Rho-squared vs observed shares
Adj.Rho-squared vs observed shares
ATC

BIC

: -1665.62

0.3119
0. 3098
0.3118
0.3102
3341. 24
3372.03

o Latent class model
= 2 classes
= 10 parameters

\

LL{final, whole model)

Rho-squared vs equal shares
Adj.Rho-squared vs equal shares
Rho-squared vs observed shares
Adj.Rho-squared vs observed shares
ATC

BIC

: -1562.08

0.3546
0. 3505
0. 3546
0.3513
3144.16
3205.74
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