Working in willingness-to-pay (WTP) space

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Theory

WTP space: introduction

- □ Can reparameterise model in WTP space as opposed to utility/preference space
- □ By rescaling marginal utilities of (some) non-cost attributes by cost coefficient
- WTP now directly estimated
 - rather than requiring calculation as ratio of partial derivatives
 - also directly obtain standard errors
- □ Not a different model, simply a reparameterisation of utility function
- □ For fixed parameter models, the two specifications are mathematically equivalent

Theory

Understanding reparameterisation of utilities

 \Box Simple example where T is time in minutes, and C is cost in £

Specification 1

 $V_{ni} = \beta_T T_{ni} + \beta_C C_{ni} + \ldots$

Marginal utilities wrt one minute in T and £1 in C given by β_T and β_C

Specification 2

$$V_{ni}=\frac{1}{60}\beta_T'T_{ni}+100\beta_C'C_{ni}+\ldots$$

Marginal utilities wrt one min in T and £1 in C given by $\frac{1}{60}\beta'_T$ and $100\beta'_C$

□ Models mathematically equivalent, so we have that $\beta'_T = 60\beta_T$ (i.e., expressed in hours) and $\beta'_C = \frac{1}{100}\beta_C$ (i.e., expressed in pence)

Can use same rationale to reparameterise actual numeraire

Theory

WTP space: implementation

Rescale marginal utilities of (some) non-cost attributes by cost coefficient

Utility space

$$V_{ni} = \beta_T T_{ni} + \beta_C C_{ni} + \dots$$
$$\frac{\partial V_{ni}}{\partial T_{ni}} = \beta_T \& \frac{\partial V_{ni}}{\partial C_{ni}} = \beta_C$$
$$\frac{\partial V_{ni}}{\partial T_{ni}} / \frac{\partial V_{ni}}{\partial C_{ni}} = \frac{\beta_T}{\beta_C}$$

WTP space

$$V_{ni} = \beta'_{C} \left(\beta'_{VT} T_{ni} + C_{ni} \right) + \dots$$
$$\frac{\partial V_{ni}}{\partial T_{ni}} = \beta'_{C} \beta'_{VT} \& \frac{\partial V_{ni}}{\partial C_{ni}} = \beta'_{C}$$
$$\frac{\partial V_{ni}}{\partial T_{ni}} / \frac{\partial V_{ni}}{\partial C_{ni}} = \beta'_{VT}$$

□ With fixed coefficients, this is a simple rescaling, and the two models are thus mathematically equivalent, with $\beta_T = \beta'_C \beta'_{VT}$, $\beta_C = \beta'_C$, and thus $\frac{\beta_T}{\beta_C} = \beta'_{VT}$

Key reference: Train, K. & Weeks, M. (2006). Discrete Choice Models in Preference Space and Willingness-to Pay Space. In: Alberini, A. & Scarpa, R. (eds) Applications of Simulation Methods in Environmental and Resource Economics, Springer

Illustration on mode choice data

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Illustration on mode choice data

Models in preference space and WTP space

Mathematically equivalent

LL(start)			: -8	196.02	
LL at equal s	hares, LL(0	0	: -8	196.02	
LL at observe	d shares, L	L(C)	: -6	706.94	
LL(final)			: -5	615.39	
Rho-squared v	s eaual sha	res		0.3149	
Adj.Rho-squar				0.3139	
Rho-squared v	s observed	shares		0.1627	
Adj.Rho-squar				0.162	
AIC			: 1	1246.78	
BIC			: 1	1301.61	
Unconstrained	optimisati	on.			
Estimates:					
	Estimate	s.e.	t.rat.(0)	Rob.s.e.	Rob.t.rat.(0)
asc_car	0.00000	NA	NA	NA	NA
asc_bus	-2.04288	0.075132	-27.191	0.092220	-22.152
asc_air	-0.58780	0.180223	-3.262	0.197274	-2.980
asc_rail	-0.86198	0.107216	-8.040	0.117824	-7.316
b_tt	-0.01205	5.5356e-04	-21.775	5.9548e-04	-20.242
b_access	-0.01992	0.002507	-7.946	0.002489	-8.003
b_cost	-0.05870	0.001463	-40.118	0.001680	-34.951
<pre>b_no_frills</pre>	0.00000	NA	NA	NA	NA
b_wifi	0.95150	0.052893	17.989	0.055165	17.248
b_food	0.41168	0.052141	7.895	0.052807	7.796

LL at equal s				.96.02	
LL at observe	ed shares, LL	(C)		06.94	
LL(final)			: -56	15.39	
Rho-squared v	rs equal shar	es	: 0	.3149	
Adj.Rho-squar	ed vs equal	shares	: 0	.3139	
Rho-squared v	vs observed s	hares	: 0	1627	
Adj.Rho-squar	ed vs observ	ed shares	: 0	1.162	
AIC				.246.78	
BIC			: 11	.301.61	
Estimates:	F-bd-m-b-			Deb	D-h hh (0)
	Estimate	s.e.			
asc_car	0.00000	NA	NA	NA	NA
asc_car asc_bus	0.00000 -2.04288	NA 0.075132	NA -27.191	NA 0.092220	-22.152
asc_car asc_bus asc_air	0.00000 -2.04288 -0.58780	NA 0.075132 0.180223	NA -27.191 -3.262	NA 0.092220 0.197274	-22.152 -2.980
asc_car asc_bus asc_air asc_rail	0.00000 -2.04288 -0.58780 -0.86198	NA 0.075132 0.180223 0.107216	NA -27.191 -3.262 -8.040	NA 0.092220 0.197274 0.117824	NA -22.152 -2.980 -7.316
asc_car asc_bus asc_air asc_rail v_tt	0.00000 -2.04288 -0.58780 -0.86198 0.20533	NA 0.075132 0.180223 0.107216 0.008783	NA -27.191 -3.262 -8.040 23.379	NA 0.092220 0.197274 0.117824 0.009523	NA -22.152 -2.980 -7.316 21.563
asc_car asc_bus asc_air asc_rail v_tt v_access	0.00000 -2.04288 -0.58780 -0.86198 0.20533 0.33933	NA 0.075132 0.180223 0.107216 0.008783 0.042442	NA -27.191 -3.262 -8.040 23.379 7.995	NA 0.092220 0.197274 0.117824 0.009523 0.042270	NA -22,152 -2,980 -7,316 21,563 8,028
asc_car asc_bus asc_air asc_rail v_tt v_access b_cost	0.00000 -2.04288 -0.58780 -0.86198 0.20533 0.33933 -0.05870	NA 0.075132 0.180223 0.107216 0.008783 0.042442 0.001463	NA -27.191 -3.262 -8.040 23.379 7.995 -40.118	NA 0.092220 0.197274 0.117824 0.009523 0.042270 0.001680	NA -22.152 -2.980 -7.316 21.563 8.028 -34.951
asc_car asc_bus asc_air asc_rail v_tt v_access b_cost v_no_frills	0.00000 -2.04288 -0.58780 -0.86198 0.20533 0.33933 -0.05870 0.00000	NA 0.075132 0.180223 0.107216 0.008783 0.042442 0.001463 NA	NA -27.191 -3.262 -8.040 23.379 7.995 -40.118 NA	NA 0.092220 0.197274 0.117824 0.009523 0.042270 0.001680 NA	NA -22.152 -2.980 -7.316 21.563 8.028 -34.951 NA
asc_car asc_bus asc_air asc_rail v_tt v_access b_cost v_no_frills	0.00000 -2.04288 -0.58780 -0.86198 0.20533 0.33933 -0.05870	NA 0.075132 0.180223 0.107216 0.008783 0.042442 0.001463 NA	NA -27.191 -3.262 -8.040 23.379 7.995 -40.118 NA	NA 0.092220 0.197274 0.117824 0.009523 0.042270 0.001680 NA	NA -22.152 -2.986 -7.316 21.563 8.028 -34.951 NA

Illustration on mode choice data

Same findings for MRS, and same standard errors

□ Understand the reason for the signs of MRS?

	optimisat:	lon.			
These outputs Estimates:		the scaling us			
	Estinate	s.e.	t.rat.(0)		Rob.t.rat.(0)
9.55	0.00000		NA	NA	NA
ass_bus	-2.04288		-27.191	0.092220	
945-AÅC	-0.58781	0.180223	-3.262	0.197274	
asc_rail b_tt	-0.86199 -0.01205	0.107216 5.5356e-04	-8.040	0.117824 5.9548e-04	
b_tt b_access	-0.01205	0.002507	-21.775	5.9548e-04 0.002489	
b_access b_cost	-0.01992	0.001463	-40.118	0.001680	
b_no_frills	0.00000	NA	-40.110 NA	0.001000 NA	-341.951 NA
b_wifi	0.95151		17,989		
b food	0.41168	0.052141	7,895	0.052807	7,796
				o_frills)/b_o o_frills)/b_o	
+ The expression \ These have been		es parameters t	that were fixe	ed in estimat	ion: b_no_frills
These have been	replaced by /FOOD includ	les parameters f r their fixed w les parameters f	that were fixed alues, giving that were fixed	ed in estimat : (b_wifi-0)/ ed in estimat	ion: b_no_frills b_cost ion: b_no_frills
These have been	replaced by /FOOD includ	les parameters f r their fixed w les parameters f	that were fixed alues, giving that were fixed	ed in estimat : (b_wifi-0)/ ed in estimat	ion: b_no_frills b_cost ion: b_no_frills
These have been The expression) These have been	replaced by /FOOD includ replaced by	les parameters f r their fixed w les parameters f r their fixed w	that were fixed alues, giving that were fixed alues, giving	ed in estimat : (b_wifi-0)/ ed in estimat : (b_food-0)/	ion: b_no_frills b_cost ion: b_no_frills
These have been The expression T These have been Running Delta m Expression	replaced by /FOOD includ replaced by ethod comput /alue Robust	les parameters + r their fixed vu les parameters + r their fixed vu cation for user- c s.e. Rob t-rai	that were fixed alues, giving that were fixed alues, giving -defined func- tio (0)	ed in estimat : (b_wifi-0)/ ed in estimat : (b_food-0)/	ion: b_no_frills b_cost ion: b_no_frills
These have been The expression 1 These have been Running Delta m Expression 1 VTT 0	replaced by /FOOD inclue replaced by athod comput /alue Robust .2053	les parameters f r their fixed w les parameters f r their fixed w ation for user- s.e. Rob t-rat 0.0095	that were fixed alues, giving that were fixed alues, giving -defined func- tio (0) 21.56	ed in estimat : (b_wifi-0)/ ed in estimat : (b_food-0)/	ion: b_no_frills b_cost ion: b_no_frills
These have been The expression 1 These have been Running Delta m Expression 1 VIT 0 VAT 0	replaced by /FOOD inclus replaced by athod comput /alue Robust .2053 @	les parameters f r their fixed vu les parameters f r their fixed vu ation for user- s.e. Rob t-rai 0.0095	that were fixed alues, giving that were fixed alues, giving -defined funct tio (0) 21.56 8.03	ed in estimat : (b_wifi-0)/ ed in estimat : (b_food-0)/	ion: b_no_frills b_cost ion: b_no_frills
These have been The expression 1 These have been Running Delta m Expression 1 VTT 0 VAT 0 VAT 0	replaced by FOOD inclue replaced by ethod comput value Robust value Robust value Robust value 2053 @ 3393 @ 2084 J	les parameters f r their fixed vu les parameters f r their fixed vu ation for user- s.e. Rob t-rai 0.0095	that were fixed alues, giving that were fixed alues, giving -defined func- tio (0) 21.56	ed in estimat : (b_wifi-0)/ ed in estimat : (b_food-0)/	ion: b_no_frills b_cost ion: b_no_frills

Estimated par	ameters		: 8		
Time taken (h	nh:mm:ss)			00:00:1.32	
pre-esti	mation			00:00:0.62	
estimati	on			00:00:0.21	
ini	tial estimat	ion		00:00:0.16	
est	imation afte	r rescaling		00:00:0.04	
post-est	imation			00:00:0.5	
Iterations					
initial	estimation			10	
estimati	on after res	caling		1	
Estimates:	Estimate		t ==t (0)	Deb e e	Dah t nat (0)
	Estimate	s.e.			Rob.t.rat.(0)
	0.00000	NA	NA		
	-2.04288				
asc_air					
asc_rail			-8.040		
v_tt	0.20533	0.008783			
v_access			7.995		8.028
b_cost	-0.05870	0.001463			
v_no_frills		NA	NA		
v_wifi	-16.20835	0.896314	-18.083		
v_food	-7.01269	0.881983	-7.951	0.894946	-7.836

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Care is required

- □ Using VTT as an example
- Utility space
 - include heterogeneity in cost and/or time sensitivity
 - either of these will lead to heterogeneity in VTT
- WTP space
 - still matters where we include heterogeneity
 - explicit calculation of VTT may be required

Example 1: heterogeneity in time sensitivity

Let C_{jn} and T_{jn} give cost and time attributes, respectively
Utility space

$$V_{jn} = \beta_C \cdot C_{jn} + (\beta_T + \beta_{T,male} \cdot z_{male,n}) \cdot T_{jn}$$
$$VTT_n = \frac{\partial V_{jn}}{\partial T_{jn}} / \frac{\partial V_{jn}}{\partial C_{jn}} = \frac{\beta_T + \beta_{T,male} \cdot z_{male,n}}{\beta_C}$$

WTP space

$$V_{jn} = \beta_{C} \cdot \left[C_{jn} + (\beta_{VTT} + \beta_{VTT,male} \cdot z_{male,n}) \cdot T_{jn}\right]$$
$$VTT_{n} = \frac{\partial V_{jn}}{\partial T_{jn}} / \frac{\partial V_{jn}}{\partial C_{jn}} = \frac{\beta_{C} \cdot \left[\beta_{VTT} + \beta_{VTT,male} \cdot z_{male,n}\right]}{\beta_{C}} = \beta_{VTT} + \beta_{VTT,male} \cdot z_{male,n}$$

• no need to consider
$$\frac{\partial V_{jn}}{\partial C_{in}}$$
 in this case

• VTT still depends on gender

Example 2: heterogeneity in time and cost sensitivity

Let *inc_n* be the income of person *n*Utility space

$$V_{jn} = \beta_{C} \cdot C_{jn} \cdot \left(\frac{inc_{n}}{inc_{n}}\right)^{\lambda_{inc}} + (\beta_{T} + \beta_{T,male} \cdot z_{male,n}) \cdot T_{jn}$$
$$VTT_{n} = \frac{\partial V_{jn}}{\partial T_{jn}} / \frac{\partial V_{jn}}{\partial C_{jn}} = \frac{\beta_{T} + \beta_{T,male} \cdot z_{male,n}}{\beta_{C} \cdot \left(\frac{inc_{n}}{inc_{n}}\right)^{\lambda_{inc}}}$$

□ VTT depends on gender and income

Example 2: correct WTP space implementation

Income needs to be interacted with cost

$$V_{jn} = \beta_{C} \cdot \left[C_{jn} \cdot \left(\frac{inc_{n}}{inc_{n}} \right)^{\lambda_{inc}} + \left(\beta_{VTT} + \beta_{VTT,male} \cdot z_{male,n} \right) \cdot T_{jn} \right]$$
$$VTT_{n} = \frac{\partial V_{jn}}{\partial T_{jn}} / \frac{\partial V_{jn}}{\partial C_{jn}} = \frac{\beta_{C} \cdot \left(\beta_{VTT} + \beta_{VTT,male} \cdot z_{male,n} \right)}{\beta_{C} \cdot \left(\frac{inc_{n}}{inc_{n}} \right)^{\lambda_{inc}}} = \frac{\beta_{VTT} + \beta_{VTT,male} \cdot z_{male,n}}{\left(\frac{inc_{n}}{inc_{n}} \right)^{\lambda_{inc}}}$$

□ VTT depends on gender and income □ but need to consider $\frac{\partial V_{jn}}{\partial C_{in}}$ in this case!

Example 2: incorrect WTP space implementation

$$V_{jn} = \beta_{C} \cdot \left(\frac{inc_{n}}{inc_{n}}\right)^{\lambda_{inc}} \cdot \left[C_{jn} + \left(\beta_{VTT} + \beta_{VTT,male} \cdot z_{male,n}\right) \cdot T_{jn}\right]$$
$$VTT_{n} = \frac{\partial V_{jn}}{\partial T_{jn}} / \frac{\partial V_{jn}}{\partial C_{jn}} = \frac{\beta_{C} \cdot \left(\frac{inc_{n}}{inc_{n}}\right)^{\lambda_{inc}} \cdot \left(\beta_{VTT} + \beta_{VTT,male} \cdot z_{male,n}\right)}{\beta_{C} \cdot \left(\frac{inc_{n}}{inc_{n}}\right)^{\lambda_{inc}}} = \beta_{VTT} + \beta_{VTT,male} \cdot z_{male,n}$$

□ Income now only affects scale of utility

- □ Cancels out in VTT calculation
- Not what we want!

Example 2: another incorrect WTP space implementation

$$V_{jn} = \beta_{C} \cdot \left[C_{jn} + (\beta_{VTT} + \beta_{VTT,male} \cdot z_{male,n}) \cdot T_{jn} \cdot \left(\frac{inc_{n}}{inc_{n}}\right)^{\lambda_{inc}} \right]$$

$$VTT_{n} = \frac{\partial V_{jn}}{\partial T_{jn}} / \frac{\partial V_{jn}}{\partial C_{jn}} = \frac{\beta_{C} \cdot (\beta_{VTT} + \beta_{VTT,male} \cdot z_{male,n}) \cdot \left(\frac{inc_{n}}{inc_{n}}\right)^{\lambda_{inc}}}{\beta_{C}}$$
$$= (\beta_{VTT} + \beta_{VTT,male} \cdot z_{male,n}) \cdot \left(\frac{inc_{n}}{inc_{n}}\right)^{\lambda_{inc}}$$

□ Income now affects VTT, but through impact on time, not cost

 $\hfill\square$ No longer the same as utility space specification we had

Incorporating random heterogeneity

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Incorporating random heterogeneity

Specification

- Utility space: $V_i = \sum_k \beta'_k x_{ik}$
- WTP space: $V_i = \beta_c \left(c_{ik} + \sum_{k \neq c} \beta'_{valuation,k} x_{ik} \right)$
- $\hfill\square$ With non-random coefficients, these are equivalent
- $\hfill\square$ No longer necessarily the case with random coefficients
 - distributional assumptions change
- □ WTP space with mixture models
 - avoids need to divide by random β_c
 - should still not mean that we use Normal distribution!

Incorporating random heterogeneity

Illustration for Mixed Logit (Lognormal)

- Negative LN for cost coefficient
- Positive LN for valuations
- □ Fit worse than preference space
 - -1,457.14 vs -1,445.69
- VTT is lower too
 - mean: 22.34 *vs* 40.19
 - sd: 16.46 vs 57.69
- Not because one model is better than the other
- Simply a result of different distributional assumptions
 - WTP space implies positive correlation

L.20493 0.65920 0.04223	0.02149 0.01585 0.15957	-56.0770 41.5791	0.013989 0.007371	-86.1365 89.4259
				89.4259
0.04223	0 10007			
	0.1232/	-0.2647	0.163462	-0.2584
L.59010	0.18695	-8.5054	0.164220	-9.6827
.48815	0.06321	-39.3658	0.049127	-50.6474
.14667	0.04307	-26.6229	0.031392	-36.5279
.28881	0.04251	30.3201	0.026470	48.6886
.16747	0.04289	-27.2181	0.025292	-46.1600
	2.48815 L.14667 L.28881 L.16747	2.48815 0.06321 1.14667 0.04307 1.28881 0.04251 1.16747 0.04289	2.48815 0.06321 -39.3658 1.14667 0.04307 -26.6229 1.28881 0.04251 30.3201 1.16747 0.04289 -27.2181	. 48815 0.06321 -39.3658 0.049127 L.14667 0.04307 -26.6229 0.031392 L.28881 0.04251 30.3201 0.026470

] 16.45696

Observations

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

WTP space: what is the benefit?

- With simple models, of course straightforward to calculate WTP as ratios of partial derivatives
- □ Calculation of standard errors using Delta method is not too hard either
- □ Avoids the need for a non-linear utility specification
- Benefits of WTP space arise specifically in the context of models with random heterogeneity, where ratio of marginal utilities may not be well defined

Observations

WTP space: common confusions

Confusion 1 Papers describe WTP space is a different model

Truth WTP space is not a model, but a different parameterisation of utility Confusion 2 Papers state that WTP space fits better than utility space, or vice versa Truth This only happens as a result of different distributional assumptions in mixed logit, not because one specification is superior to another

Observations

WTP space: common confusions

Confusion 3 Some people say cost coefficient in WTP space is constrained to 1 Truth Confusion arises from $V_i = \mu \left(\delta_{wtp,i} + \sum_{k}^{K} \beta_{wtp,k} x_{k,i} + cost_i \right)$, where k are all non-cost attributes. But $\mu = \beta_{cost}$. Confusion 4 All parameters and ASC need to be included in scaling by β_{cost} Truth No, up to the user which parameters to express in monetary terms, and these 4 specifications are all equivalent, and final 3 are all WTP space

 $V_{i} = \delta_{i} + \beta_{1} \mathbf{x}_{1,i} + \beta_{2} \mathbf{x}_{2,i} + \beta_{cost} cost_{i}$ $V_{i} = \beta_{cost} \left(\delta_{wtp,i} + \beta_{wtp,1} \mathbf{x}_{1,i} + \beta_{wtp,2} \mathbf{x}_{2,i} + cost_{i} \right)$ $V_{i} = \delta_{i} + \beta_{cost} \left(\beta_{wtp,1} \mathbf{x}_{1,i} + \beta_{wtp,2} \mathbf{x}_{2,i} + cost_{i} \right)$ $V_{i} = \delta_{i} + \beta_{2} \mathbf{x}_{2,i} + \beta_{cost} \left(\beta_{wtp,1} \mathbf{x}_{1,i} + cost_{i} \right)$

WTP space: common confusions

Confusion 5 Non-cost attributes should have a negative sign in front of them Truth A user may find this convenient, but it is not a requirement - only implies that WTP is for increases in attribute (remember the earlier point)

$$V_i = \beta_{cost} \left(\delta_{wtp,i} - \beta_{wtp,1} x_{1,i} - \beta_{wtp,2} x_{2,i} + cost_i \right)$$

Confusion 6 Only cost can be used for scaling

Truth A model can be parameterised in any other valuation space, using whatever attribute the user would use as the denominator in MRS