Computing and reporting confidence metrics

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Computing and reporting confidence metrics

Topics covered

- Standard errors for derived measures
- Signs of over-specification
- □ Reporting measures of confidence

Key concepts & study plan

Experimental design

Data collection & processing

Model specification & estimation

Interpretation & application

Standard errors for derived measures

- $\hfill\square$ Obtain estimates and standard errors for β
- $\hfill\square$ Key interest is in functions of individual elements of β
 - MRS and WTP
 - difference between two parameters
 - demand forecasts and elasticities
 - welfare measures
 - moments of distributions
 - correlation between randomly distributed coefficients
- Need standard errors for derived quantities

0.004257 0.013506 0.001848 0.043419	-14.040 -9.760 -20.269 -26.534	0.006742 0.023638 0.002317 0.061373	-8.869 -5.576 -16.161 -18.772
0.001848	-20.269	0.002317	-16.161
0.043419	-26.534	0.061373	-18 772
*(-0.05977/-0	0.13182)		
		95977-(-0.03745) 9*(-0.05977/-0.13182)	

The Delta method

- Delta method is a first-derivative calculation
- Often described as an approximation
- Shown to be exact rather than an approximation by Daly et al. (2012)

Delta method calculations

- $\hfill\square$ Let Φ be a function of β
- $\hfill\square$ Estimates $\hat{\beta}$ and AVC matrix Ω

$$\square \textit{ cov } (\Phi) = \Phi' \ ^{\mathsf{T}} \Omega \Phi'$$

 $\hfill\square$ Φ' gives first derivatives of Φ against β

Key reference: Daly, A.J., Hess, S. & de Jong, G. (2012), Calculating errors for measures derived from choice modelling estimates, Transportation Research Part B 46(2), pp. 333-341.

Examples: difference and ratio

Difference:
$$\Phi = \beta_1 - \beta_2$$
i.e. $\phi'_1 = 1$ and $\phi'_2 = -1$
and $var (\beta_1 - \beta_2) = \omega_{11} + \omega_{22} - 2 \omega_{12}$
Ratio: $\Phi = \frac{\beta_1}{\beta_2}$
i.e. $\phi'_1 = \frac{1}{\beta_2}$ and $\phi'_2 = -\frac{\beta_1}{\beta_2^2}$
and
 $var \left(\frac{\beta_1}{\beta_2}\right) = \left(\frac{\beta_1}{\beta_2}\right)^2 \left(\frac{\omega_{11}}{\beta_1^2} + \frac{\omega_{22}}{\beta_2^2} - 2 \frac{\omega_{12}}{\beta_1\beta_2}\right)$

Estim	ates:				
	Estimate	s.e.	t.rat.(0)	Rob.s.e. R	ob.t.rat.(0)
b_tt	-0.05977	0.004257	-14.040	0.006742	-8.865
b_tc	-0.13182	0.013506	-9.760	0.023638	-5.576
b_hw	-0.03745	0.001848	-20.269	0.002317	-16.161
b_ch	-1.15207	0.043419	-26.534	0.061373	-18.772
> moc	lel\$robvarcov				
	b_tt	b_tc	b_	nw b_	ch
b_tt	4.545565e-05	1.176310e-04	2.920627e-4	36 1.379524e-	04
b_tc	1.176310e-04	5.587382e-04	6.516358e-4	36 3.154629e-	04
b_hw	2.920627e-06	6.516358e-06	5.370123e-4	36 4.961005e-	05
b_ch	1.379524e-04	3.154629e-04	4.961005e-	3.766619e-	03
> dif	f_tt_hw=-0.05	977-(-0.0374	5)		
> se_	diff_tt_hw=sc	rt(4.545565e	-05+5.370123	e-86-2*2.920	527e-06)
> dif	f_tt_hw				
Г17 -	0.02232				
> 50_	diff_tt_hw				
Г17 e	.00670705				
> VIT	_per_hour=60*	C-0.05977/-0	13182)		
> se_	VTT_per_hour-	sart((VTT_pe	-hour)^2*(4	.545565e-05/	((-0.05977)^2)+5.58
		2)^2)-2*1.17			
> VTT	_per_hour				
	7.20528				
> se_	VTT_per_hour				
	.334052				
> del	taMethod_set	tings=list(ex	pression=c(c	liff_tt_hw="b	_tt-b_hw".
			```````````````````````````````````````	TT_per_hour=	"60*b_tt/b_tc"))
> apo	llo_deltaMetH	nod(model, de	ltaMethod_se	ttings)	
Runni	ng Delta meth	nod computati	on for user-	defined func	tion:
E>	pression Va	alue Robust s	.e. Rob t-ro	tio (0)	
di	ff_tt_hw -0.0	0.0	967	-3.33	
VTT_	per_hour 27.2	2065 3.3	343	8.16	

## Signs of over-specification



Key concepts & study plan



Experimental design



Data collection & processing



Model specification & estimation



Interpretation & application

## Signs of over-specification

#### Why am I getting Inf or NaN for standard errors?

- Theoretical identification issues
  - e.g. missing normalisation for ASCs
- Empirical identification issues
  - e.g. parameters going towards inf or + inf, if one group of people never or always chooses a given option
- Calculation of numerical derivatives could lead to some zero probabilities
  - use analytical derivatives, and if not possible, use bootstrapping

F-12-1-1					
Estimates:			t (0)	Data a s	D-b tt (0)
	Estimate	s.e.	t.rat.(0)		Rob.t.rat.(0)
asc_car	0.73984	NA	NA	NA	NA
asc_bus	-1.30304	NA	NA	NA	N
asc_air	0.41869	NA	NA	NA	N/
asc_rail	0.14451	NA	NA	NA	N
b_tt	-0.01205	NA	NA	NA	N/
b_access	-0.01992	NA	NA	NA	N
b_cost	-0.05870	NA	NA	NA	N
b_no_frills	-0.26666	NA	NA	NA	N/
b_wifi	0.68484	NA	NA	NA	N
6	0.14502	NA		NA	N
			NA	NA	N
Unconstrained These outputs	l optimisati	on.			
	l optimisati : have had t	on. he scaling u	sed in estim	ation applie	ed to them.
Unconstrained These outputs Estimates:	l optimisati Have had t Estimate	on. he scaling u: s.e.	sed in estim t.rat.(0)	ation applie Rob.s.e.	ed to them. Rob.t.rat.(0)
Unconstrained These outputs Estimates: asc_car	l optimisati : have had t	on. he scaling u	sed in estim	ation applie	ed to them.
Unconstrained These outputs Estimates: asc.car asc.bus	<pre>b optimisati b have had t Estimate 0.00000 -2.04288 -0.58781</pre>	on. he scaling us s.e. NA 0.075131 0.180223	sed in estim t.rat.(0) NA -27.191 -3.262	Rob.s.e. NA 0.092220 0.197274	ed to them. Rob.t.rat.(0) NA -22.152 -2.980
Estimates: asc_car asc_bus asc_air asc_air asc_rail	l optimisati have had t Estimate 0.00000 -2.04288 -0.58781 -0.86199	on. he scaling u: s.e. NA 0.075131 0.180223 0.107216	sed in estim t.rat.(0) NA -27.191 -3.262 -8.040	Rob.s.e. NA 0.092220 0.197274 0.117824	ed to them. Rob.t.rat.(0) NA -22.152 -2.980 -7.316
Unconstrained These outputs Estimates: asc_car asc_bus asc_bus asc_mit asc_rail b_tt	l optimisati have had t Estimate 0.00000 -2.04288 -0.58781 -0.86199 -0.81205	on. he scaling u: NA 0.075131 0.180223 0.107216 5.5356e-04	sed in estim t.rat.(0) NA -27.191 -3.262 -8.040 -21.775	Rob.s.e. NA 0.092220 0.197274 0.117824 5.9548e-04	ed to them. Rob.t.rat.(0) NA -22.152 -2.980 -7.316 -20.242
Unconstrained These outputs Estimates: asc_Car asc_Dus asc_air asc_rail b_tt b_access	l optimisati have had t Estimate 0.00000 -2.04288 -0.58781 -0.86199 -0.01205 -0.01992	on. he scaling us 5.e. NA 0.075131 0.180223 0.187216 5.5356e-04 0.002507	sed in estim t.rat.(0) AA -27.191 -3.262 -8.040 -21.775 -7.946	Rob.s.e. NA 0.092220 0.197274 0.117824 5.9548e-04 0.002489	ed to them. Rob.t.rat.(0) A -22.152 -2.980 -7.316 -20.242 -8.003
Unconstrained These outputs Estimates: asc_sar asc_bus asc_air asc_rail b_tt b_access b_cost	l optimisati have had t Estimate 0.00000 -2.04288 -0.58781 -0.86199 -0.81205 -0.01992 -0.01992 -0.05870	on. he scaling u:	sed in estim t.rat.(0) NA -27.191 -3.262 -8.040 -21.775 -7.946 -40.118	Rob.s.e. NA 0.092220 0.197274 0.117824 5.9548e-04 0.002489 0.001680	ed to them. Rob.t.rat.(0) NA -22.152 -2.980 -7.316 -20.242 -8.003 -34.951
Unconstrained These outputs Estimates: asc_Car asc_Dus asc_air asc_rail b_tt b_access	l optimisati have had t Estimate 0.00000 -2.04288 -0.58781 -0.86199 -0.01205 -0.01992	on. he scaling us 5.e. NA 0.075131 0.180223 0.187216 5.5356e-04 0.002507	sed in estim t.rat.(0) AA -27.191 -3.262 -8.040 -21.775 -7.946	Rob.s.e. NA 0.092220 0.197274 0.117824 5.9548e-04 0.002489	ed to them. Rob.t.rat.(0) A -22.152 -2.980 -7.316 -20.242 -8.003



Key concepts & study plan



Experimental design



Data collection & processing



Model specification & estimation



Interpretation & application

### How should significance be reported?

- Minimum output should be estimates and standard errors, or estimates and t-ratios, as s.e. can be calculated from t-ratios
- □ Common practice in some fields to report estimates and *p*-values only
  - This is bad practice, for two reasons
  - *p*-values imply an analyst decision on whether a one-sided or two-sided test is used, and this is often not reported
  - *p*-values are often reported with a numerical precision that prevents an analyst from recovering standard errors (e.g. p < 0.001)
- □ Even worse is the reliance on * measures in some fields, e.g. using * for 90% confidence, ** for 95% confidence and *** for 99% confidence
  - The same issues apply as for *p*-values, but they are further compounded by the fact that e.g. * * * could mean a *t*-ratio of 4 or 40
- $\Box$  *p*-values and * measures should never replace s.e. or *t*-ratios

#### Recommendations

- Wasserstein et al. (2019) conclude "that it is time to stop using the term 'statistically significant' entirely. Nor should variants such as 'significantly different', 'p<0.05', and 'nonsignificant' survive, whether expressed in words, by asterisks in a table, or in some other way."
- And "[analysts should not] believe that an association or effect exists just because it was statistically significant [or] that an association or effect is absent just because it was not statistically significant."

Wasserstein, R.L., Schirm, A.L., Lazar, N.A. (2019), Moving to a world beyond "p<0.05". The American Statistician 73, 1–19.

### **Recommendations (continued)**

- In health, "clinical significance" measures whether a treatment has noticeable effect on health outcomes. Choice modellers may wish to consider "behavioural significance", i.e. does a parameter change predictions and "policy significance", and does it have a significant impact on outcome of any process using the results
- □ Finally, note that removing a parameter that is *"not significant"* may have undesirable impact on other parameters
  - useful approximation to say that removal of parameter 1 will change parameter 2 by
    - $-t_1 * \frac{r_{12}}{t_2}$ , where t are the respective t-ratios and  $r_{12}$  is the correlation