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Prediction and elasticities
Estimation vs prediction

Estimation
q represents step of understanding current behaviour
q find best model parameters

Prediction
q how will behaviour change under given scenario?
q e.g. some products are added/removed/changed
q involves applying estimated model, not reestimating it on changed data
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Prediction and elasticities
The basics of forecasting

q Apply estimated model to:
‚ predict choices in new settings
‚ predict impact of changes in products
‚ predict impact of changes in population

q Mainly relevant in labelled settings
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Prediction and elasticities
Forecasting matters

q Many studies are primarily interested in willingness-to-pay
q Even then, useful diagnostic check to look at forecasts
q For example, does estimated model give reasonable implied elasticities?
q Well fitting models do not necessarily lead to good forecasts!
q Substantial risk of over-fitting to estimation data
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Prediction and elasticities
How do we produce forecasts?
q Use estimated β to calculate Vjn and Pjn for all n and j

parameter Apple iPhone Samsung Galaxy Huawei P
δApple 2.5 1 0 0

δSamsung 0.75 0 1 0
βfeatures 0.2 8 4 2
βprice -0.01 600 400 350

V -1.9 -2.45 -3.1
eV 0.1496 0.0863 0.0450
P 53.24% 30.72% 16.04%

Question:
What is chosen?
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Prediction and elasticities
Assigning choice to Apple ignores probabilistic nature

Apple iPhone Samsung Galaxy Huawei P
V -1.9 -2.45 -3.1
P 53.24% 30.72% 16.04%

q Use average Pj across N instead of individual-level predictions
q Or assign choice according to Pj

‚ In our case, take a random draw 0 ă“ rU ă“ 1
‚ if rU ă“ 0.5324, choose Apple iPhone
‚ if 0.5324 ă rU ă“ 0.8396, we choose Samsung Galaxy
‚ if 0.8396 ă rU , we choose Huawei P

q Try deterministic_vs_probabilistic.xlsx for a mode choice example
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Impact of changes
Studying the impact of a change in cost

q Carry out prediction with increased cost and get new predicted choices/demand
q Might seem reasonable to compare to base cost choices in data
q Would mean comparing a modelled outcome to an observed outcome

‚ model outcomes are affected by error, while data is not
‚ model is not likely to perfectly reproduce base scenarios

‚ except for linear-in-parameters MNL with full set of ASCs
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Impact of changes
Solution

q Make two predictions from model
‚ Baseline prediction: apply model without changing attributes/population
‚ Forecast prediction: apply model with changed data

q Can then compare forecast to baseline application
q Both are affected by the same model bias
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Impact of changes
Elasticities

q Elasticity is percent change in probability as a result of change in an attribute

Own elasticity of MNL

Ei ,xk,i “
BVi

Bxk,i
xk,i p1´ Pi pβqq ,

with linear in attributes V , BVi
Bxk,i

“ βxk

Cross-elasticity of MNL

Ei ,xk,j “ ´
BVj

Bxj
xk,jPj pβq ,

exhibiting IIA characteristic

Much more complex for advanced models
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Impact of changes
Elasticities: arc elasticity approach

Baseline application
q predicted share for product i : Si ,base

Forecast prediction

q apply same increase (e.g. cost) for whole sample, say ΦC “
Ci,new

Ci,base
, e.g. ΦC “ 1.01

q obtain new share for product i : Si ,forecast

Elasticity calculation

q Calculate Ei ,C “ log
´

Si,forecast
Si,base

¯

{logpΦC q

q See elasticities.xlsx



Choice Modelling Academy © 12

Impact of changes
Marginal effects

q Approach used especially with categorical variables
q Compare predicted demand at two different levels of a given variable
q Could also use with continuous variables
q Can use for attributes of alternatives, characteristics of decision-makers, etc
q Approach:

Prediction 1: Make prediction of demand with variable of interest set to first level of
interest for entire data: Dj ,1 “

ř

n

ř

t Pjnt pxjnt “ L1q

Prediction 2: Make prediction of demand with variable of interest set to second level
of interest for entire data: Dj ,2 “

ř

n

ř

t Pjnt pxjnt “ L2q

Comparison: Compute Dj,2´Dj,1
Dj,1



Experimental 
design

Data collection     
& processing

Model specification 
& estimation

Interpretation        
& application

Key concepts        
& study plan

Corrections to constants and scale

13



Choice Modelling Academy © 14

Corrections to constants and scale
Correcting market shares

q Market shares in estimation sample may be very different from real world market
shares

q Can recalibrate the model by adjusting the alternative specific constants
q Let δ0j be the the estimated constant for alternative j before correction, with S0

j

being the market share predicted by the uncorrected model
q Let SR

j be the real world market share

q Constants can be adapted to: δ1j “ δ0j ` log

ˆ

SR
j

S0
j

˙

q Iterative process which can require a few steps
q See asc_correction.xlsx
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Corrections to constants and scale
Correcting the scale

q Scale especially in SP data may be very different from real world scale
q Ideally, this can be corrected through joint RP-SP estimation
q But RP data might not always be available
q Compute implied cost elasticity with estimated coefficients
q Compare elasticity with expectations or official guidelines
q Then adjust the scale until the two are in line
q See scale_correction.xlsx
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Forecasting in practice
Care is required

q Need to consider whether the estimated model is suitable for forecasting the given
scenario

q E.g. was the estimation scenario substantially different in scope?
q Also, need to consider correction of scale and recalibration of constants
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Forecasting in practice
Population changes

q Real world forecasting would likely also require adjusting the sample of respondents
q We often estimate models on small samples, and then apply them to very large

samples in sample enumeration
q Another key issue in forecasting is that we also need to forecast changes in the

population of decision makers and in the characteristics of the choice sets they face
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Forecasting in practice
Sample enumeration

q Assemble a population to use in forecasting
‚ either based on real data (e.g., census), or synthetic population
‚ or estimation sample

q Apply the model to this data, i.e., make a prediction for each person in that data
q Potentially incorporate weights in that process to make the sample representative
q Then aggregate demand
q If the model incorporates interactions with person characteristics, then the forecasts

in sample enumeration will be different depending on those
‚ this is one of the key benefits of using deterministic heterogeneity as much as possible
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Insights into attribute “importance”
Attribute importance based on utility

q Commonly used in some areas, not in others
q Compare potential range of utility impact for attributes

‚ from worst to best level
q Issue

‚ utility based attribute importance can be quite different from impact on
probabilities/choices
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Insights into attribute “importance”
Alternative approaches

q Elasticities
‚ mainly relevant for labelled choices
‚ only for continuous attributes

q Marginal effects/impact on probabilities
‚ use entire sample
‚ keep all attributes unchanged except for the one of interest
‚ make two predictions at different levels for that attribute

‚ e.g. best and worst level
‚ compare potential impact on probabilities



Choice Modelling Academy © 23

Insights into attribute “importance”
Example on Covid-19 vaccine study

q Six tasks per respondent
q Choice between two vaccines or no

vaccine, and between free (with wait)
or paid (no wait) access

q Efficacy presented as remaining risk of
infection to give respondents a baseline
(for no vaccine)
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Insights into attribute “importance”
Impact of efficacy on vaccine uptake
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Insights into attribute “importance”
Impact of protection duration
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Insights into attribute “importance”
Impact of severe vs mild side effects
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